Non-commutative graphs

Matthew Daws

Lancaster

Oxford, October 2023

Matthew Daws Quantum Graphs



Channels

A channel sends an input message (element of a finite set A) to an
output message (element of a finite set B) perhaps with noise so that
there is a probability that a € A is mapped to various different b € B.

p(bla) = probability that b is received given that a was sent
Define a (simple, undirected) graph structure on A by
(a1, az) an edge when p(bla;)p(blaz) > 0 for some b.

This is the confusability graph of the channel.
If we want to communicate with zero error then we seek a maximal
independent set in A.
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Physics notation

I will follow physics notation, so inner products (-|-) are linear on the
right.

@ Use bra-ket notation: [) is a vector in a Hilbert space H, and (|
is a member of the dual space, identified with the conjugate H.
@ Then (Y|dp) = (P|d) the inner-product. . .
e and |d) (1P| is the rank-one operator H — H; « — (Pla)d.
e Given an operator 7' on H we tend to write (| T'|¢p) which means
(WIT(P)) = (T*(W)Id).
Give an index set I, consider ¢2(I); the canonical orthonormal basis is

often denoted by (e;);cr or (8;);c;. We abuse notation and write |z)
for these basis vectors, so that (z]5) =9 ;.
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Quantum Mechanics

Definition
A state is a unit vector ) in a (finite dim) Hilbert space H. J

Multiplying a state by a unit modulus complex number doesn’t change
the physics. One way to deal with this is to identify a state with the
rank-one projection [\p) (1.

Definition J

A density is a positive, trace one operator p € B(H).

@ So a rank-one density is a state; we call a general density a mized
state.

@ Mathematically, using trace-duality, a density is nothing but a
(normal) state on the C*-algebra B(H).
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Quantum channels

Definition

A (quantum) channel is a trace-preserving, completely positive
(CPTP) map B(Hy) — B(Hg).

@ positive and trace-preserving so it maps densities to densities;

@ completely positive so you can tensor with another system and
still have positivity.

Theorem (Stinespring)

A lhinear map 0: A — B(H), from a C*-algebra A, is completely
positive if and only if it admaits a dilation of the form

0(a)=V*n(a)V (a € A)

form: A — B(K) a x-homomorphism, and V : H — K a bounded
linear map.
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Stinespring and Kraus

Any CP map & : B(Hy) — B(Hg) has the form
&(z)=V'n(z)V  (z € B(Ha)),

where V : Hg — K, and m: B(H4) — B(K) is a *-representation.
@ Any such 7t is of the form 7(z) =z ® 1 where K = Hy ® K'.

o Take an o.n. basis (e;) for K’ so V(&) =} ;, K;(&) ® e; for some
operators K; : Hy — Hp.

We arrive at the Kraus form:

E(z) =) KiK; (z € B(Hy).

Trace-preserving if and only if } , K K; = 1.
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Quantum zero-error

We turn B(H) into a Hilbert space using the trace: (T'S) = tr(T*S).

A sensible notion of when densities p, o are distinguishable is when
they are orthogonal.

Let E(z) =) ; K;zK," be a quantum channel. We wish to consider
when £(p) L €(o). As € is positive, this is equivalent to

E()(WD) L E(ld)(dl) (W € Imagep, d € Image o).
Equivalently

0= tr (E(W)(WNE(ID) () Ztr (Kb (WI K K d) (DK )
= Z| (WIK; Klb) P
1,J

which is equivalent to (|K;" Kj|$) = 0 for each 1, 7.
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To operator systems
So VP, ¢ are distinguishable after applying & when
(Q|T|dp) =0 foreach T € lin{K;K;}.

Set 8§ = lin{K" K} which has the properties:
@ 8 is a linear subspace;
o T €8 if and only if T* € §;
ele8(as) K K;=1as € is CPTP).
That is, 8 is an operator system, which depends only on € and not the
choice of (Kj).
Theorem (Duan)

For any operator system & C B(H,) there is some quantum
channel € : B(Hy) — B(Hp) giving Tise to S.
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In the classical case
Given a classical channel from A to B with probabilities p(bla), we
encode this as follows:

o Let Hy = {?(A) with o.n. basis {|a) : a € A}; and the same for B.
@ Define Kraus operators

Ka = p(bla)/?(b)(a|: Hy — Hp.
Then € : p — Za)b Kawp K}, sends a pure state |c)(c| to

ZKab|c)<c| ;b—Zp bla)|b)(alc)(cla)(b] = Zp blc)|b)(
ab

ab
That is, the combination of pure states which can be recelved, given
that message ¢ was sent.
@ We could consider the subalgebra of diagonal matrices in
B(Ha) =My which is {°(A).
@ A CPTP map is “really” acting on the predual, so we obtain a map
0*(A) — ¢*(B) which maps the point mass at c to )_, p(b|c)8,
e That is, a (left) stochastic matrix.
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The associated operator system
The Kraus operators are
Ko = p(bla)Y/?|b)(al : Hy — Hp.

Hence

S = lin{ K, Koa = lin{p(bla)/2p(d|c)"/?a) (bld) (cl}
— lin{p(bla)"/2p(blc)/2|a) (cl}

= lin{la)(c|: a ~ ¢},

where a ~ c exactly when p(bla)p(blc) > 0 for some b.

Thus § is directly linked to the confusability graph of the channel: it is
the span of the matrix units e, for each edge (a, c) in the graph.
(Notice here our “graphs” and finite, simple, but we allow (single,
unoriented) loops at vertices.)
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Quantum relations

Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)

Let M C B(H) be a von Neumann algebra. A quantum relation on M
is a weak*-closed subspace S C B(H) with M'SM’ C S. We say that
the relation is:

Q reflezive if M’ C S,
@ symmetricif S* =S where S* ={z*:z € S};
@ transitive if $? C S where S? = mw*{my cz,y € Sh

When M = (*®(X) C B({?(X)) there is a bijection between the usual
meaning of “relation” on X and quantum relations on M, given by

z ~y when e; , € S, S = ﬁw*{ex,y tT~yh
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Operator bimodules

The condition that M/SM’ C S means that S is an operator
bimodule over M'.

(Not to be confused with Hilbert C*-modules!)
@ We assume M C B(H) and S C B(H).

o If M C B(K) as well, we of course want a T' C B(K)
corresponding to S.

@ This can be found by using the structure theory for normal
x-homomorphisms 0 : M — B(K). Essentially 0 is a dilation
followed by a cut-down in the commutant.

@ That S is a bimodule over M’ is needed to get this
correspondence with T.

So this notion is really independent of the choice of embedding

M C B(H). [Weaver]| gives an intrinsic notion just using M.
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Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and as:
@ undirected graphs corresponds to symmetric relations;

@ a reflexive relation corresponds to having a “loop” at every vertex.

Definition (Weaver)

A gquantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak*-closed subspace S C B(H), which is an M’-bimodule

(M'SM’ C S).

If M = B(H) with H finite-dimensional, then as M’ = C, a quantum
graph is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V, F) consider the {0, 1}-valued matrix A with

1 :(2,7) € E,
Am:{ (4,)

0 :otherwise,

the adjacency matriz of G.
o A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;
@ A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ¢?( V). This is the GNS space for
the C*-algebra (*°( V') for the state induced by the uniform measure.
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General C*-algebras

Let B be a finite-dimensional C*-algebra, and let ¢ be a faithful state

on B, with GNS space L?(B). Thus B bijects with L?(B) as a vector
space, and so we get:

@ The multiplication on B induces a map
m: L?(B)® L?(B) — L?(B);
@ The unit in B induces a map 1 : C — L?(B).
We get an analogue of the Schur product:

zey=mzoy)m* (z,y € B(L*(B))).
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Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matriz is a self-adjoint A € B(L?(B)) with:
o m(A® A)m* = A (so Schur product idempotent);
o (1aN'm)(1® A®1)(mM®1l)=A4;

o m(A®1)m* =id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to
“undirected”.

I want to sketch why this definition is equivalent to the previous notion
of a “quantum graph”.
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Subspaces to projections

Fix a finite-dimensional C*-algebra (von Neumann algebra) M. A
“quantum graph” is either:

o A subspace of B(H) (where M C B(H)) with some properties; or
@ An operator on L?(M) with some properties.
How do we move between these?
S C B(H) is a bimodule over M’. As H is finite-dimensional, B(H) is
a Hilbert space for
(zly) = tr(z™y).
Then M ® M°P is represented on B(H) via

n:M®MP—B(B(H)), nlzxy):T—zTy.

@ The commutant of (M ® M°P)is M’ @ (M')°P.
@ An M'-bimodule of B(H) corresponds to an
M’ ® (M')°P-invariant subspace of the Hilbert space B(H);
@ which corresponds to a projection in M @ M°P.
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Operators to algebras

So how can we relate:
e Operators A € B(L?*(M));
o Projections in M ® M°P?

O O
1 o 1)
= = =
@, O

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state { on M:
A M — LP(M); (Al2)A(y) = b(z"y).

As L?(M) is finite-dimensional, every operator on L?(M) is a linear
combination of rank-one operators. So we may define a bijection

V:B(LA(M)) = M ® M°; |A(b)){A(a)] — b® a*,

and extend by linearity!
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Operators to algebras 3

V:B(LA(M)) = M ® M°P; |A(b)){A(a)] — b® a*,

@ V¥ is a homomorphism for the “Schur product”
A e Ay =m(A; ® Ay)m*™;

e A=~ (1" m)(1® A®1)(m*n ® 1) corresponds to the
anti-homomorphism 0: a® b — b ® a on M ® M°P;

o A+— A* corresponds to e — o(e)*.

Conclude: A quantum adjacency matrix corresponds to a projection
e € M ® M°P with o(e) = e.
BuT: There is no clean one-to-one correspondence between the axioms.
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KMS States

Any faithful state { is KMS: there is an automorphism o’ of M with
Y(ad) =P(bo’(a))  (a,be M).

Indeed, there is Q € M positive and invertible with
P(a) =tr(Qa)  o'(a) = QaQ .

Theorem (D.)

Twisting our bijection ¥ using o’ allows us to establish a bijection
between:

e Quantum adjacency operators A € B(L*(M));
@ projections e € M @ M°P with e = o(e) and (o' ® 0’)(e) = e;
e self-adjoint M'-bimodules S C B(H) with QSQ~ ! = S.

So this is more restrictive than the tracial case.
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Invariance under the modular automorphism

Why do we end up with (¢’ ® ¢’)(e) = e?
@ The “middle axiom” is a bit mysterious: we already assume that A
is self-adjoint, and shouldn’t this alone correspond to the graph
being undirected? (Both conditions together is a bit strong.)

o [Matsuda] looked at a different condition, that of A being “real”
which means that A : L?(B) — L?(B), thought of as a map
B — B, is x-preserving.

o [D.] showed that replacing “self-adjoint and axiom (2)” with “real”
gives a simple bijection with projections.

o [Wasilewski] has recently shown that looking at “KMS
inner-products” not “GNS inner-products” is a nice framework to
view this in.

(However, we are stuck with the existing literature.)
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Towards homomorphisms
Let Bj, Bz be finite-dimensional C*-algebras (maybe just B; = B(H;)),
and let 8 : By — Bs be a CPTP map with Kraus form

n
0(z) =) b.ab;.
1=1

For : = 1,2 let B; C B(H;) and let S; C B(H;) be a quantum
graph/relation over B;.

Definition (Weaver)
The pushforward of Sy is

Sy = Bj-bimodule {b,zb : € S1,1 < 1,5 < n}.

The pullback of S5 is
5, = B]-bimodule {b}yb; : y € 55,1 < 1,5 < nl.
Setae 30EE 580




Motivation

Let G =(Vg,Eg), H=(Vy, Eg) be graphs.
@ For f: Vg — Vg a map, define 0 : {*°(Vg) — £*°( V) in the
usual way, 0(a)(u) = a(f(u)) for u € Vg,a € {*°(Vy).
@ So 0 is a *-homomorphism, in particular, a UCP map.

We find a Kraus form for 0. Define b; : (?(Vg) — €2(Vy) by

b; (04) = bz if u is the ith vertex with f(u) = z.

Then indeed

D bfabi(8.) = alf(w)) =0(a)(8,)  (a€t®(Vy)ue Vg).
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CPTP maps
These (b;) satisfy the pleasing fact that

Z bieub;k = €f(u) (u € Vi),
%

where e, € {*°( V) is the minimal projection. So we obtain a TPCP
map 0: (*°(Vg) = {°(Vy).

@ Really what’s going on is that we have the natural positive map
0:0(Vg) = (V).
The operator system associated to G is
Sg =lin{ey,y : (u,v) € Eg} C My,.
Then, using é\,
=7 .
Sc = lin{ef(y) f(v) : (u,v) € Eg}.
Similarly, given Sy, we find that
S .
Su =linfeus : (f(u),f(v)) € Eg}
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Homomorphisms

=5 .
Sg = ||n{ef(u))f(v) : ('LL, ’U) € Egl.
So @ C Sy means exactly that
(w,v) € B¢ = (f(u),f(v)) € En.

That is, f : Vg — Vg induces a graph homomorphism.

o For general quantum graphs, and general TPCP maps, Stahlke
takes this as the definition of a homomorphism.

@ Weaver calls these CP morphisms; tentatively suggests we should
start with a x-homomorphism if we want a “homomorphism”.
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Pullbacks

[We “reverse the arrows” and use UCP maps not TPCP maps.|

Let 8 : M — N be a normal CP map between von Neumann algebras
M C B(Hy) and N C B(Hy). The Stinespring dilation takes a special
form:

@ there is a Hilbert space K and U : Hy — Hy ® K,
0 0(z)=U*(z®1)U forz e M C B(Hy);
@ there is a normal *-homomorphism p: N’ — Hj; ® K with
Uz’ =p(z’)U for z’ € N'.
Proposition (D.)
The pullback satisfies

<§ = weak” -closure{U*zU : z € SRB(K)},

independent of choice of U. In particular, this is already an
N'-bimodule. )
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Duality

Let Bi, Bs be finite-dimensional with faithful traces ¢;. Given a UCP
map 0 : By — B there is a TPCP map 0: By — B satisfying/defined
by

¢1(a0(b)) = @2(8(a)b)  (a € By,beE By).

(“Accardi-Cecchini adjoint”.)
Proposition (D.)

Let @; be the “Markov Traces”, and giwen 0 for 0. Then a
pushforward of a quantum relation using 0 is the same as the
pullback using 0.

(We saw this for our maps on {*° and {!. The general case is more
complicated, but follows roughly the same idea.)
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Homomorphisms

Recall that 0: M — N is a homomorphism /| CP-morphism S; — S
when Sz C 5.

Theorem (Stahlke)

Leto: C(Vy) — C(Lg) be a UCP map giving a homomorphism G
to H (that s, with Sg C Sy ). Then there is some map
f: Vg — Vg which ts a (classical) graph homomorphism.

@ In general 0 need not be directly related to f.

o However, often we just care about the ezristence of a
homomorphism.

e E.g. a k-colouring of G corresponds to some homomorphism
G — Ky, the complete graph.
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Further

@ For a “homomorphism” do we really want our UCP map to be a
x-homomorphism?

o It turns out some ideas from “quantum games” [Brannan et al.]
naturally separate out the conditions on a “CP-morphism”, and
these actually force a *-homomorphism.

@ Also related to trying to “ignore loops”.
Possible future things:

o What are the “correct axioms”? E.g. self-adjointness or “reality”?
Applications which might motivate this?

@ Is there some sort of infinite-dimensional theory?
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