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Group representations and algebras

Fourier algebras and operator spaces

Generalising for Figa-Talamanca–Herz algebras



Locally compact groups

A group G which is a locally compact space in such a way that
the maps

G ×G → G; (s, t) 7→ st , G → G; s 7→ s−1,

are continuous is called a locally compact group.
Examples:

I Any discrete group: for example, Z or SL(2, Z);
I Various abelian groups: R or T;
I Lie groups, such as SL(3, R), SO(3) or GL(n, R).
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Haar measure

I The key property of locally compact groups which
separates them from other topological groups is the Haar
measure: a left invariant regular measure.

I For a discrete group, this is nothing but the counting
measure.
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L1(G) algebra

Given a Haar measure, we can define the convolution product
on the Banach space L1(G) by

(f ? g)(s) =

∫
f (t)g(t−1s) dt (f , g ∈ L1(G), s ∈ G).

On L1(R), this is just the usual notion of convolution.

I L1(G) and L1(H) are isometrically isomorphic algebras if
and only if G and H are isomorphic.

I However, for example, L1(C4) and L1(C2 × C2) are
isomorphic, but not isometrically.
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Group representations
Let E be a reflexive Banach space. Write invB(E) for the
invertible linear maps on E .

I For us, a group representation shall be a group
homomorphism π : G → invB(E) such that π(s) is an
isometry for each s ∈ G.

I We insist that for each x ∈ E , the map G → E ; s 7→ π(s)(x)
is continuous.

I We can form an algebra homomorphism π̂ : L1(G) → B(E)
by integration,

π̂(f )(x) =

∫
G

f (s)π(s)(x) ds (f ∈ L1(G), x ∈ E).

I We can form a categorical sense of equivalence: two
representations π : G → invB(E) and θ : G → invB(F ) are
equivalent when there is an isomorphism T : E → F with
Tπ(s) = θ(s)T for each s ∈ G.
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A(π) spaces

I This is a poor sense of equivalence though: for example,
the trivial representations on non-isomorphic Banach
spaces are not equivalent!

I Instead, we consider the bilinear map

Π : E ′ × E → C(G); (µ, x) 7→
(
s 7→ 〈µ, π(s)(x)〉

)
.

I This becomes linear by using a tensor product,

Π : E ′⊗̂E → C(G).

I We define A(π) to be the co-image of Π. That is, A(π) as a
vector space is the image of Π inside C(G), but we give
A(π) the norm that comes from identifying this image with
E ′⊗̂E/ ker Π.
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A(π) spaces (cont.)

More concretely, A(π) is those continuous functions f : G → C
such that there exist sequences (µn) ⊆ E ′ and (xn) ⊆ E with∑
‖µn‖‖xn‖ < ∞ and

f (s) =
∞∑

n=1

〈µn, π(s)(xn)〉 (s ∈ G).

We give A(π) the norm

‖f‖A(π) = inf
{∑

‖µn‖‖xn‖
}

.

Then, for example, a representation π is (almost) trivial if and
only if A(π) = C. So studying A(π) gives a better notion of
equivalence.
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A(π) as an algebra

I For some representations π, A(π) is even a subalgebra of
C(G).

I Let 1 < p < ∞, and let λp : G → invB(Lp(G)) be the
left-regular representation given by translation:

λp(s)(f ) = g, g(t) = f (s−1t) (f ∈ Lp(G), s, t ∈ G).

I Then Ap(G) := A(λp) is a (Banach) algebra: called a
Figa-Talamanca–Herz algebra.

I The proof that Ap(G) is an algebra relies on “Fell’s
absorption principle”. That is, tensoring with the left-regular
representation gives you nothing new, as long as the other
Banach space is a “p-space”.
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Dual of A(π)
I As A(π) is a quotient of E ′⊗̂E , we have that the dual of

A(π) is a subspace of the dual of E ′⊗̂E . As E is reflexive,
we have that (E ′⊗̂E)′ = B(E), for the duality

〈T , µ⊗ x〉 = 〈µ, T (x)〉 (T ∈ B(E), µ⊗ x ∈ E ′⊗̂E).

I The dual of Ap(G) is an algebra, denoted by PMp(G). It is
the weak-operator closed algebra generated by the group
of operators {λp(s) : s ∈ G} ⊆ B(Lp(G)).

I When p = 2, L2(G)⊗̂L2(G) is just the trace-class operators
on L2(G), and PM2(G) = VN(G) is the group von
Neumann algebra of G. Then A2(G) = A(G) is the Fourier
algebra of G, studied first by Eymard.

I Every f ∈ A(G) is given as

f (s) = 〈λ(s)(x), y〉 (s ∈ G),

for some x , y ∈ L2(G). Notice we don’t need a sum here.
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Why Fourier?

I Recall the Fourier transform, F : L1(R) → C0(R),

F(f )(s) =
1√
2π

∫
R

f (s)e−ist dt .

I Then A(R) is simply the image of F : recall that F takes the
convolution product to the pointwise product. So VN(R) is
simply L∞(R).

I This idea works for any abelian locally compact group G.
The group of all characters G → T is called the dual group,
denoted by Ĝ. The Pontrjagin duality theorem tells us that
ˆ̂G = G canonically.

I Generalised Fourier transform gives A(G) = L1(Ĝ).
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denoted by Ĝ. The Pontrjagin duality theorem tells us that
ˆ̂G = G canonically.

I Generalised Fourier transform gives A(G) = L1(Ĝ).
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Homological properties

I A group G is amenable when there is a mean on L∞(G).
That is, a state m on L∞(G) which is left-invariant.

I All compact and abelian groups are amenable.
I There is a notion of amenable for Banach algebras as

introduced by Johnson.
I The group algebra L1(G) is amenable if and only if G is

amenable.
I So A(G) = L1(Ĝ) is amenable for all abelian G.
I Problem: A(SO(3)) is not amenable, but SO(3) is certainly

compact!
I Runde: A(G) is amenable if and only if G contains an

abelian subgroup of finite index.
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Operator spaces and complete boundedness
I Let H be a Hilbert space and identify

Mn(B(H)) = B(H ⊕ · · · ⊕ H).

I We hence have a norm on Mn(B(H)).
I Given a map T : B(H) → B(H), let

(T )n : Mn(B(H)) → Mn(B(H));
(
aij

)
7→

(
T (aij)

)
.

I We say that T is completely-bounded when

‖T‖cb := sup
n
‖(T )n‖ < ∞.

I An operator space is a (closed) subspace E of B(H). We
hence get a norm on Mn(E), and so a notion of
completely-bounded map on E .
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Ruan’s Theorem

I When E ⊆ B(H) is an operator space, is E ′? How can we
embed E ′ into B(H)?

I Ruan proved an abstract characterisation of an operator
space.

I Let E be a Banach space, and for each n, let ‖ · ‖n be a
norm on the vector space Mn(E), such that:∥∥∥∥(

A 0
0 B

)∥∥∥∥
n+m

= max
(
‖A‖n, ‖B‖m

)
, ‖αAβ‖n ≤ ‖α‖‖A‖n‖β‖,

where α, β ∈ Mn(C) = B(Hn), where Hn is an
n-dimensional Hilbert space.

I Then E ⊆ B(H) for some Hilbert space H such that the
norms ‖ · ‖n agree.
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Mapping and dual spaces

I We write CB(E , F ) for the space of completely bounded
maps between two operator spaces E and F .

I We can turn CB(E , F ) into an operator space (by Ruan’s
Theorem) by setting

Mn(CB(E , F )) = CB(E , Mn(F )).

I As the dual space E ′ is simply CB(E , C) (this is a lemma)
then we get an operator space structure on E ′. Without
Ruan’s Theorem, this is very hard to see!

I Everything we expect to work does: the canonical map
E → E ′′ is a complete isometry, and a map T : E → F is a
complete isometry if and only if T ′ : F ′ → E ′ is a complete
quotient map.
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Ruan’s Fourier Algebra Theorem

I The dual of the Fourier algebra is VN(G), which as a
C∗-algebra carries a natural operator space structure.

I So A(G) gets an operator space structure, by treating it as
a subspace of the dual of VN(G).

I In fact, A(G) is a completely contractive Banach algebra:
I that is, A(G) acts on itself in a completely contractive way,

by the Left Regular representation.
I We can define a “completely bounded” notion of amenable

for a completely contractive Banach algebra.
I Then A(G) is amenable if and only if G is amenable.
I Similarly, other properties of A(G), treated in the operator

space sense, reflect well properties of G.
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Recall: Figa-Talamanca–Herz algebras

Recall the algebra Ap(G), which is a (non closed) subalgebra of
C0(G), and is the predual of a space of operators
PMp(G) ⊆ B(Lp(G)).

I Idea: if an operator space is a subspace of B(H) for a
Hilbert space H, then

I define a p-operator space to be a subspace of B(Lp(µ)) for
some measure µ.

I Then Ap(G) will become a p-operator space by duality:
does Ruan’s Theorem hold in this case?
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Input from Pisier and Le Merdy

I Pisier has already studied a notion of p-completely
bounded maps.

I Using this, Le Merdy essentially found a definition of
p-operator space, and proved a version of Ruan’s
Representation Theorem.

I However, we need to move to a larger class of Banach
spaces. Let SQp be the collection of quotients of
subspaces of Lp spaces. Notice that SQ2 is simply the
class of Hilbert spaces.

I Then a p-operator space is a subspace of B(X ) for some
X ∈ SQp.

I For n ≥ 1, we norm Mn by identifying this with B(`p
n). Then

Mn(X ) is normed by identifying with B(`p
n(X )).
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Problems ahead

I The main problem comes from the following result: if E is a
p-operator space, then E ′ can be embedded into B(`p(I))
for some set I.

I So as soon as we move to dual spaces, we can dispense
with SQp and just work with Lp spaces.

I However, if κ : E → E ′′ is still a complete isometry, then
every E arises as a subspace of B(Lp).

I Le Merdy has a nice counter-example: so κ is not in
general a complete isometry anymore.

I Similarly, duality between subspaces and quotients breaks
down.
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Ap(G) algebras are well behaved!

I For us, the main problem is this: PMp(G) ⊆ B(Lp(G)) is
naturally a p-operator space. Hence so is Ap(G) by duality.

I However, Ap(G) is defined to be a quotient of
Lp(G)⊗̂Lp′

(G), which is the predual of B(Lp(G)).
I So we could give Ap(G) a p-operator space structure

making it a complete quotient of Lp(G)⊗̂Lp′
(G).

I A sufficient condition for these structures to be equal is that
there is a completely contractive projection from B(Lp(G))
onto PMp(G).

I It turns out that when G is amenable, it is well-known that
there is a such a projection. Indeed, when p = 2, this is
even a necessary condition.
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It all works, just!

I There are various other facts, like commutation relations,
which work for p = 2, and luckily hold for Ap(G), at least
when G is amenable.

I When Ap(G) is amenable, it has a bounded approximate
identity, so by Leptin’s Theorem, G is amenable.

I If G is amenable, then we put our results together to see
that Ap(G) is very well behaved as a p-operator space. In
particular, Ap(G)⊗̂Ap(G) = Ap(G ×G), and A2(G ×G)
embeds densely into Ap(G ×G).

I It then quickly follows from Ruan’s Theorem that as A2(G)
is amenable, so must be Ap(G).
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Other properties, other approaches

I The impression we get is that when G is amenable, then
Ap(G) behaves well, but that otherwise we are in trouble.

I Lambert, Neufang and Runde did something similar by
finding a fairly natural operator space structure on
B(Lp(G)).

I Under this, Ap(G) becomes a completely bounded (but not
contractive) Banach algebra, and Ap(G) is amenable if and
only if G is amenable.

I However, their approach suffers from similar problems to
ours, meaning that neither approach allows us to study
other homological properties.
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Multipliers

I A multiplier of a commutative Banach algebra A is a linear
map m : A → A with m(ab) = am(b). We write M(A) for
the collection of multipliers.

I By properties of Ap(G), one can show that every multiplier
is bounded, and is given by pointwise multiplication by
some continuous function.

I de Canniere and Haagerup introduced the notion of a
completely bounded multiplier without explicitly using
operator spaces, although the definition is as expected,
leading to Mcb(A(G)).

I This leads them onto the study of when A(G) has an
approximate identity, bounded in the Mcb norm: such
groups G are said to have the completely bounded
approximation property, and include F2, which is of course
not amenable.
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Herz-Schur Multipliers

I Some time previous to this, Herz introduced a notion of a
Herz-Schur multiplier: these are continuous maps on
G ×G which multiply Lp(G)⊗̂Lp′

(G) into itself pointwise.
I The multipliers which drop to multipliers of Ap(G) are said

to be in Bp(G).
I It has been known for a time that Mcb(A(G)) = B2(G)

isometrically.
I Using some further results of Pisier, it is not too hard to

show that Bp(G) = Mcb(Ap(G)) in the p-operator space
setting.

I It would be interesting to know if this remains true for the
operator space structure introduced by Lambert, Neufang
and Runde.
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Future ideas

I Ideas like p-operator spaces could be thought of as part of
a loosely defined program to study, say, questions about
B(`p) using ideas from operator algebras.

I For example, we know that B(`2) is not amenable, as it is
not nuclear.

I Read, Pisier and Ozawa have proofs that B(`1) is not
amenable (Ozawa even gets a non-technical proof for
B(`2)).

I It is not known for B(`p), nevermind B(Lp), for any
1 < p < ∞ with p 6= 2.

I The main problem is that we just don’t understand Banach
space properties well enough: e.g. does N (`p) have
non-trivial cotype.
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