Outline

Group representations and algebras

Fourier algebras and operator spaces

Generalising for Figa-Talamanca—Herz algebras
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Locally compact groups

A group G which is a locally compact space in such a way that
the maps

GxG— G(s,t)—~st, G—Gs—s ',

are continuous is called a locally compact group.
Examples:

» Any discrete group: for example, Z or SL(2,7Z);
» Various abelian groups: R or T;
» Lie groups, such as SL(3,R), SO(3) or GL(n,R).
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Haar measure

» The key property of locally compact groups which
separates them from other topological groups is the Haar
measure: a left invariant regular measure.

» For a discrete group, this is nothing but the counting
measure.
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L'(G) algebra

Given a Haar measure, we can define the convolution product
on the Banach space L'(G) by

(fg)(s /f dt (f.gcL'(G).sc @)

On L'(R), this is just the usual notion of convolution.
» L'(G) and L'(H) are isometrically isomorphic algebras if
and only if G and H are isomorphic.

» However, for example, L'(C4) and L'(C, x Cy) are
isomorphic, but not isometrically.
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Group representations
Let E be a reflexive Banach space. Write inv B(E) for the
invertible linear maps on E.

» For us, a group representation shall be a group
homomorphism 7 : G — inv B(E) such that 7(s) is an
isometry for each s € G.

» We insist that for each x € E, the map G — E; s — 7(8)(x)
is continuous.

» We can form an algebra homomorphism # : L'(G) — B(E)
by integration,

#(F)(x) = /Gf(s)w(s)(x) ds (fel'(G),x€E).

» We can form a categorical sense of equivalence: two
representations 7 : G — invB(E) and § : G — inv B(F) are
equivalent when there is an isomorphism T : E — F with
Tn(s) =0(s)T foreach s € G.
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A(r) spaces

» This is a poor sense of equivalence though: for example,
the trivial representations on non-isomorphic Banach
spaces are not equivalent!

» Instead, we consider the bilinear map
N:E x E— C(G): (.X) — (8~ (u,7(8)(x))).
» This becomes linear by using a tensor product,
N: E'®E — C(G).

» We define A(w) to be the co-image of . That is, A(r) as a
vector space is the image of I inside C(G), but we give
A(7) the norm that comes from identifying this image with
E'®E/ker .
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A(r) spaces (cont.)

More concretely, A(r) is those continuous functions f: G — C
such that there exist sequences (un) C E’ and (x,) C E with
2~ lpnllllXnll < o0 and

[e.e]

f(8)=) (unm(s)xn))  (s€ Q).

n=1

We give A(7) the norm

1 Fllaey = inf{ 3~ alllxall .

Then, for example, a representation = is (almost) trivial if and
only if A(m) = C. So studying A() gives a better notion of
equivalence.
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A(~) as an algebra

» For some representations 7, A(w) is even a subalgebra of
C(G).

» Let1 < p<oo,andlet )\, : G— invB(LP(G)) be the
left-reqular representation given by translation:

Ao(8)(f) =g, g(t) =f(s™'t)  (f€LP(G),s,tc G).

» Then Ap(G) := A(\p) is a (Banach) algebra: called a
Figa-Talamanca—Herz algebra.

» The proof that A,(G) is an algebra relies on “Fell’s
absorption principle”. That is, tensoring with the left-regular
representation gives you nothing new, as long as the other
Banach space is a “p-space”.
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Dual of A(n)

» As A(r) is a quotient of E’®E, we have that the dual of
A(r) is a subspace of the dual of E'RE. As E is reflexive,
we have that (E'®E)’ = B(E), for the duality

(T,p@x) = (u, T(x)) (T eB(E),p®x e E'QE).

» The dual of Ay(G) is an algebra, denoted by PM,(G). It is
the weak-operator closed algebra generated by the group
of operators {\p(S) : s € G} C B(LP(Q)).

» When p = 2, L2(G)®L?(G) is just the trace-class operators
on L?(G), and PM,(G) = VN(G) is the group von
Neumann algebra of G. Then Ax(G) = A(G) is the Fourier
algebra of G, studied first by Eymard.

» Every f € A(G) is given as

f(s) = (A(s)(x).y)  (s€ @),
for some x, y € L?(G). Notice we don’t need a sum here.
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Why Fourier?

» Recall the Fourier transform, 7 : L'(R) — Co(R),

F(f)(s) = \/127 /R f(s)e ™! dt.

» Then A(R) is simply the image of F: recall that F takes the
convolution product to the pointwise product. So VN(R) is
simply L*>(R).

» This idea works for any abelian locally compact group G.
The group of all characters G — T is called the dual group,
denoted by G. The Pontrjagin duality theorem tells us that
G = G canonically.

» Generalised Fourier transform gives A(G) = L'(G).
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Homological properties

» A group G is amenable when there is a mean on L>(G).
That is, a state m on L*°(G) which is left-invariant.

» All compact and abelian groups are amenable.

» There is a notion of amenable for Banach algebras as
introduced by Johnson.

» The group algebra L'(G) is amenable if and only if G is
amenable.

» So A(G) = L'(G) is amenable for all abelian G.

» Problem: A(SO(3)) is not amenable, but SO(3) is certainly
compact!

» Runde: A(G) is amenable if and only if G contains an
abelian subgroup of finite index.
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Operator spaces and complete boundedness
» Let H be a Hilbert space and identify

Mn(B(H)) = B(H® - - @ H).

» We hence have a norm on M, (B(H)).
» Givenamap T : B(H) — B(H), let

(T)n: Mp(B(H)) — Mnp(B(H)); (aj) — (T(ay)).

» We say that T is completely-bounded when

[ Tlleb == sup 1(T)nll < .

» An operator space is a (closed) subspace E of B(H). We
hence get a norm on M, (E), and so a notion of
completely-bounded map on E.
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Ruan’s Theorem

» When E C B(H) is an operator space, is E’? How can we
embed E’ into B(H)?

» Ruan proved an abstract characterisation of an operator
space.

» Let E be a Banach space, and for each n, let || - ||, be a
norm on the vector space M,(E), such that:

A0

0 B
where «, 5 € M,(C) = B(Hp), where Hy is an
n-dimensional Hilbert space.

» Then E C B(H) for some Hilbert space H such that the
norms | - ||, agree.

=max (||Alln, | Blm). llaABlln < [l | Allall5]

n+m
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Mapping and dual spaces

» We write CB(E, F) for the space of completely bounded
maps between two operator spaces E and F.

» We can turn CB(E, F) into an operator space (by Ruan’s
Theorem) by setting

Mn(CB(E, F)) = CB(E,Mpu(F)).

» As the dual space E’ is simply CB(E, C) (this is a lemma)
then we get an operator space structure on E’. Without
Ruan’s Theorem, this is very hard to see!

» Everything we expect to work does: the canonical map
E — E” is a complete isometry,andamap T: E — Fisa
complete isometry if and only if T’ : F — E’ is a complete
quotient map.
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Ruan’s Fourier Algebra Theorem

» The dual of the Fourier algebra is VN(G), which as a
C*-algebra carries a natural operator space structure.

» So A(G) gets an operator space structure, by treating it as
a subspace of the dual of VN(G).

» In fact, A(G) is a completely contractive Banach algebra:

» that is, A(G) acts on itself in a completely contractive way,
by the Left Regular representation.

» We can define a “completely bounded” notion of amenable
for a completely contractive Banach algebra.

» Then A(G) is amenable if and only if G is amenable.

» Similarly, other properties of A(G), treated in the operator
space sense, reflect well properties of G.
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Recall: Figa-Talamanca—Herz algebras

Recall the algebra A, (G), which is a (non closed) subalgebra of
Co(G), and is the predual of a space of operators
PMy(G) € B(LP(G)).
» Idea: if an operator space is a subspace of B(H) for a
Hilbert space H, then

» define a p-operator space to be a subspace of B(LP(u)) for
some measure .

» Then Ap(G) will become a p-operator space by duality:
does Ruan’s Theorem hold in this case?
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Input from Pisier and Le Merdy

>

Pisier has already studied a notion of p-completely
bounded maps.

Using this, Le Merdy essentially found a definition of
p-operator space, and proved a version of Ruan’s
Representation Theorem.

However, we need to move to a larger class of Banach
spaces. Let SQ, be the collection of quotients of
subspaces of LP spaces. Notice that SQ» is simply the
class of Hilbert spaces.

Then a p-operator space is a subspace of B(X) for some
X € SQp.

For n > 1, we norm M, by identifying this with B(¢5). Then
Mp(X) is normed by identifying with B(¢5(X)).
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Problems ahead

» The main problem comes from the following result: if E is a
p-operator space, then E’ can be embedded into B(¢P(/))
for some set /.

» So as soon as we move to dual spaces, we can dispense
with SQ, and just work with LP spaces.

» However, if k : E — E” is still a complete isometry, then
every E arises as a subspace of B(LP).

» Le Merdy has a nice counter-example: so « is nhot in
general a complete isometry anymore.

» Similarly, duality between subspaces and quotients breaks
down.



Ap(G) algebras are well behaved!

» For us, the main problem is this: PM,(G) C B(LP(G)) is
naturally a p-operator space. Hence so is Ay(G) by duality.



Ap(G) algebras are well behaved!

» For us, the main problem is this: PM,(G) C B(LP(G)) is
naturally a p-operator space. Hence so is Ay(G) by duality.

» However, Ay(G) is defined to be a quotient of
LP(G)®LP'(G), which is the predual of B(LP(G)).



Ap(G) algebras are well behaved!

» For us, the main problem is this: PM,(G) C B(LP(G)) is
naturally a p-operator space. Hence so is Ay(G) by duality.

» However, Ay(G) is defined to be a quotient of
LP(G)®LP'(G), which is the predual of B(LP(G)).

» So we could give Ap(G) a p-operator space structure
making it a complete quotient of LP(G)&LP' (G).



Ap(G) algebras are well behaved!

» For us, the main problem is this: PM,(G) C B(LP(G)) is
naturally a p-operator space. Hence so is Ay(G) by duality.

» However, Ay(G) is defined to be a quotient of
LP(G)®LP'(G), which is the predual of B(LP(G)).

» So we could give Ap(G) a p-operator space structure
making it a complete quotient of LP(G)&LP (G).

» A sufficient condition for these structures to be equal is that
there is a completely contractive projection from B(LP(G))
onto PM,(G).



Ap(G) algebras are well behaved!

» For us, the main problem is this: PM,(G) C B(LP(G)) is
naturally a p-operator space. Hence so is Ay(G) by duality.

» However, Ay(G) is defined to be a quotient of
LP(G)®LP'(G), which is the predual of B(LP(G)).

» So we could give Ap(G) a p-operator space structure
making it a complete quotient of LP(G)&LP (G).

» A sufficient condition for these structures to be equal is that
there is a completely contractive projection from B(LP(G))
onto PM,(G).

» It turns out that when G is amenable, it is well-known that
there is a such a projection. Indeed, when p = 2, this is
even a necessary condition.
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It all works, just!

» There are various other facts, like commutation relations,
which work for p = 2, and luckily hold for A,(G), at least
when G is amenable.

» When A,(G) is amenable, it has a bounded approximate
identity, so by Leptin’'s Theorem, G is amenable.

» If G is amenable, then we put our results together to see
that Ap(G) is very well behaved as a p-operator space. In
particular, Ap(G)2As(G) = Ap(G x G), and Ax(G x G)
embeds densely into Ay(G x G).

» It then quickly follows from Ruan’s Theorem that as Ax(G)
is amenable, so must be A,(G).
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» The impression we get is that when G is amenable, then
Ap(G) behaves well, but that otherwise we are in trouble.

» Lambert, Neufang and Runde did something similar by
finding a fairly natural operator space structure on
B(LP(G)).

» Under this, Ap(G) becomes a completely bounded (but not
contractive) Banach algebra, and A,(G) is amenable if and
only if G is amenable.

» However, their approach suffers from similar problems to
ours, meaning that neither approach allows us to study
other homological properties.
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Multipliers

» A multiplier of a commutative Banach algebra A is a linear
map m : A — A with m(ab) = am(b). We write M(.A) for
the collection of multipliers.

» By properties of Ay(G), one can show that every multiplier
is bounded, and is given by pointwise multiplication by
some continuous function.

» de Canniere and Haagerup introduced the notion of a
completely bounded multiplier without explicitly using
operator spaces, although the definition is as expected,
leading to M, (A(G)).

» This leads them onto the study of when A(G) has an
approximate identity, bounded in the M, norm: such
groups G are said to have the completely bounded
approximation property, and include F», which is of course
not amenable.
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Herz-Schur Multipliers

» Some time previous to this, Herz introduced a notion of a
Herz-Schur multiplier. these are continuous maps on
G x G which multiply LP(G)®LP'(G) into itself pointwise.

» The multipliers which drop to multipliers of Ay(G) are said
to be in By(G).

» It has been known for a time that M, (A(G)) = Bx(G)
isometrically.

» Using some further results of Pisier, it is not too hard to
show that B,(G) = Mcp(Ap(G)) in the p-operator space
setting.

» It would be interesting to know if this remains true for the
operator space structure introduced by Lambert, Neufang
and Runde.
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Future ideas

» |deas like p-operator spaces could be thought of as part of
a loosely defined program to study, say, questions about
B(¢p) using ideas from operator algebras.

» For example, we know that 5(¢,) is not amenable, as it is
not nuclear.

» Read, Pisier and Ozawa have proofs that B(¢1) is not
amenable (Ozawa even gets a non-technical proof for
B((2)).

» It is not known for B(¢p), nevermind B(L,), for any
1 < p<oowithp#2.

» The main problem is that we just don’t understand Banach
space properties well enough: e.g. does N (¢,) have
non-trivial cotype.
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