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Motivation

A classical communication channel is modelled as follows:
@ Finite input alphabet X and finite output alphabet Y;

o If x € X is send down the channel, then y € Y can be recieved with
probability p(y|x). So 0 < p(y|x) < 1,3, p(y|x) = 1.
So x1, X2 € X can be “confused” if there exists y € Y with

p(ylx1)p(y|x2) > 0. This leads to the “confusability graph” of a channel:
vertices X and x; ~ x; if they can be confused.

Example from the channel

Q 05 02 0

0
0O 08 04 O
0 0 0 1
05 0 0 O
0O O 06 O

We might care about the independence number.
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Quantum channels

A quantum state is a “density matrix”: a trace one positive-definite matrix
p € M.

@ A pure state is p = |P){|. But states can also be “mixed”.
A quantum channel is a linear map T: M, — M,,:

@ which sends density matrices to density matrices, so is positive, and
trace-preserving;

@ can be tensored and remains positive, so is completely positive.
It is reasonable to say that two states p1, p, are “distinguishable” when
0 = tr(p1p2).
Question

When are two states p1, py distinguishable after being sent along a
quantum channel T2
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Kraus representation

A nice exercise using the Stinespring dilation construction gives us the
Kraus representation for a quantum channel T: M,, — M,,:

k
T(x) = Z XiXX; (x € M),
i=1

for some linear maps x;: C" — C™. That T is trace-preserving is
equivalentto ) ;xix; = 1.
When is tr(T(p1)T(p2)) = 02 As T is positive, equivalently

tr (TQWXWDT(d)P)) =0 (W € Im(p1), d € Im(py)).

But calculate:
0=) tr(alb)(bIxix PN dIX) = > [(Wlxxidh)] .
ij ij
Equivalently, (W|x:x;¢p) = 0 for all i, j.
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Kraus representation

Conclusion

To decide if states (given by 1 and ¢) are distinguishable after applying T,
we only need to know (|x¢) = 0 for each x € lin{x:x;}.

So set S = lin{x’x;} and consider:
@ S is a linear space, by construction;
e xe Sifandonly if x* € S;
@ 1¢eS8(as Zix”fxi =1).
So 8 is an operator system.
A less obvious fact is that S depends only on T, and not the chosen Kraus
representation.
Question
Let S1, S, be operator systems in M. Is 1 = S, implied by

WIxp) =0 (xeS1) & @xdp)=0 (x€85)?




Classical case revisited

Channel from X to Y with conditional probabilities p(y|x). Encode as:
@ Hy = £>(X) with o.n. basis (ey); same from Y.

@ Define Kraus operators
Ke: Hx = Hy;  ex = p(ylx)'/ey, e, 0 (z # x).
Notice that
Kiy: Hy = Hx; ey p(ylx)' ey, ew > 0 (w #y).

Then the quantum channel T acts as

lec)(ec| = Z nylec><ec|K;y = ZP(Y|C)|ey><ey|-
X,y y

So a pure state at c is sent to the linear combination of pure states at y,
weighted by the probability of obtaining y, given that c was sent.
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The associated operator system

Consider Ky Kwz- This is the operator
ew P p(ZIw)' 2K e, = 8y .p(zlw) p(ylx) ey, e > 0 (t#w).
So is 0, or a scalar multiple of |e,)(ey| if z =y and p(y|w)p(y|x) # 0. So
S = lin{K} Kuz} = lin{le){ew| : Ty, p(ylw)p(ylx) # O}.

Recall that the confusability graph has x ~ w exactly when
p(ylw)p(y|x) # O for some y. Writing ey ,, for the matrix unit with a 1 in
the (x, w) entry,

S =lin{egw : x ~ w},

the “operator system of the confusability graph”.
So...a “non-commutative graph” is an operator system in M. [Stahlke]
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Quantum relations
Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)

Let M C B(H) be a von Neumann algebra. A quantum relation on M is a

weak*-closed subspace S C B(H) with M'SM’ C S. We say that the
relation is:

@ reflexive if M’ C S;
@ symmetric if S* = S where §* = {x* : x € S};

@ transitive if S> C S where S? = EW*{xy X,y € S}.

V.
When M = {°(X) € B(£%(X)) then M’ = {°(X), and M’SM’ C S means that
S is the weak*-closed linear span of the matrix units it contains. So there is

a bijection between the usual meaning of “relation” on X and quantum
relations on M, given by

x ~ywheney, €85, S=Tin" {exy i x~ vy}
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Operator bimodules

[Optional]
The condition that M’SM’ C S means that S is an operator bimodule over
M.
(Not to be confused with Hilbert C*-modules!)
@ We assume M C B(H) and S C B(H).
o If M C B(K) as well, we want a T C B(K) corresponding to S.
@ This can be found by using the structure theory for normal

+-homomorphisms 0 : M — B(K). Essentially 0 is a dilation followed
by a cut-down in the commutant.

@ That S is a bimodule over M’ is needed to get this correspondence
with T.

So this notion is really independent of the choice of embedding
M C B(H). [Weaver] gives an intrinsic notion just using M.

Matthew Daws Quantum graphs February 2025 9/26



Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, with:
@ undirected graphs corresponding to symmetric relations;
e reflexive relations corresponding to having a “loop” at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed
subspace S € B(H), which is an M’-bimodule (M’'SM’ C S).

If M = B(H) with H finite-dimensional, then as M’ = C, a quantum graph
is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V, E) consider the {0, 1}-valued matrix A with

A= {1 - (i,j) € F,

0 : otherwise,

the adjacency matrix of G.
@ A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;
@ A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on {?(V). This is the GNS space for the
C*-algebra {*(V) for the state induced by the uniform measure.
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General C*-algebras

Let B be a finite-dimensional C*-algebra, and let 1\ be a faithful state on B,

with GNS space L?(B). Thus B bijects with L?(B) as a vector space, and so
we get:

@ The multiplication on B induces a map m : L?(B) ® L%(B) — L*(B);
o the Hilbert space structure now allows us to define
m* : [?(B) — [2(B) ® L%(B).
@ The unitin B induces a mapn : C — L%(B);
@ similarly we obtain * : L2(B) — C, which is just ¢.
We get an analogue of the Schur product:

xey=mx®ym" (x,y € B(L%(B))).
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Graphical calculus

[I remain ambivalent about this!]

We use the graphical calculus / string diagrams. (See the book by Heunen
and Vicary.) Read bottom-to-top. Let

H; Hs K
Tz(i) 5=(i) R=(i)
Hj H, K1
Composition is stacking; tensor product is juxtaposition.
Hs
e @ rore @ @
H1
H
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Elements of Frobenius algebras

The operators associated with (B, 1) are

B

. m= A\ . b=n'=

B B

=3
1
AO0—w

w—0 QA
3*
1

Notice we identify B with [?(B) here.
For example, that m is an associative product can be encoded in diagrams

m(m ® id) = m(id ®@m)

See [Matsuda] (where | borrow some Tikz code from!)
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Schur product

We can hence write the non-commutative Schur product as

xey=m(x®y)m" =

There are various operators we can perform with diagrams— the graphical
calculus— but care needs to be taken if { is not a trace. | won’t say too
much more.

Definition
1V is a 6-form (for a constant & > 0) if
mm* = 5%id.
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Quantum adjacency matrices

Due to [Many authors]. A quantum adjacency matrix (operator / map) is
A € B(L*(B)) with:

e Schur product idempotent: oo = @
mA® A)m* = A
e A is self-adjoint: A* = A

e A is “self-transpose”: @ - @

(1Td3MM(ITAR T (IMM1)=A

e Is “reflexive” (has a loop at every vertex):
mA® 1)m* = id
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Subspaces to projections

Fix a finite-dimensional C*-algebra (von Neumann algebra) B. A
“quantum graph” is either:

@ A subspace of B(H) (where B C B(H)) with some properties; or
@ An operator on L?(B) with some properties.
How do we move between these?

S C B(H) is a bimodule over B’. As H is finite-dimensional, B(H) is a
Hilbert space (just the Hilbert-Schmidt operators) for:

(xly) = tr(x"y).
Then B ® B°P is represented on HS(H) via
m:B®B® - B(HS(H));, n(x®y): T xTy.

@ The commutant of 7t(B ® B°P) is B’ ® (B’)°P.
@ An B’-bimodule of B(H) corresponds to a B’ ® (B”)°P-invariant
subspace of the Hilbert space HS(H);

@ which corresponds to a projection in B ® B°P.
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KMS states

As B is finite-dimensional, there is a positive, invertible Q € B with
Y(x) = tr(Qx) (x € B),
where tr is your favourite faithful trace on B. Define
oi,(x) = Q*xQ7* (xe B,zeC).
This is the modular automorphism group; we have

P(xy) = tr(Qxy) = tr(yQx) = tr(QyQxQ™") = P(yo_i(x)) (x,y € B).
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Operators to Algebras

Identify B with L?(B), so B has an inner-product (x|y) = P(x*y). As B is
finite-dimensional, any operator on L%(B) is finite-rank, and so we have a
linear bijection

W, B(L*(B)) = B® B®;  |b)(al = ou(b) ® ois(a)”,

for any s, t € R. (Here |b){a|: c — W(a*c)b.)

Lemma

The linear isomorphisms V¥, , are homomorphisms for the Schur product
on B(L*(B)) and the usual product on B® B°P.

So A € B(L?(B)) being Schur idempotent gives that e = Wi (A)is
idempotent. What about the other axioms?
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Operators to Algebras 2

Let T: B® B°? — B ® B°P be the tensor swap map, an
anti-homomorphism.

Proposition

Let e = ¥} (A) for some A € B(L*(B)). Then:
Q@ Y (A") = (Oig—s) ® Tic—s))T(€");
@ W ((1@nm)(18A® )M ® 1)) = (0issi1) ® 0_iis0)T(e).

In particular, ‘1’;/2'0 has:

Q V), ,(A) = (02 ® 0jj2)t(e");
(2] \y;/z,o(“ @N'M)(1®A® 1)(mM® 1)) = (02 ® o_jjp)t(e).

So a quantum adjacency matrix A gives e with

e =e” = (02 ® 0j2)t(e’) = (0_i)2 ® o_jj2)(e)
o e=e'=e?’=1(e)and (0,® 0,)(e) =e (z€ C)
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The Proof

[Optional]
e = e’ = (0j2 ® 0ij2)T(€") = (0_jj2 ® 0_jj2)t(e)
Firstly use /5 (x*) = 0_j/2(x)*, so taking adjoint gives
e’ = (0-i2 ® o_j2)t(e) = (0j2 ® 0jp2)T(€") =e.
Secondly use e* = (oj/, ® 0j/,)t(€") and e = e to get

(0i2®0i2)T(e) = e = (0_j/, ® o_jj2)T(e)
= 1(e)=(0;®o0)t(e) & e=(0;® oje).

This uses that i/, o 0}/, = 0.

Soe=(Q'®Qe(Q® Q") in B® B°, and so e commutes with any
power of (Q® Q7"), that is, (0, ® 0,)(e) = e.
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Conclusions

We obtain bijections between:
@ Quantum adjacency matrices A;
@ projections e € B® B°P with t(e) = e, (0,® 0;)(e) = e for each z € C;

@ subspaces S C B(L%(B)) which are B’-operator bimodules,
self-adjoint, and satisfy QSQ' = S.

That A is also reflexive corresponds to S containing Q~"/2.
If V is a trace then we obtain bijections between:
@ reflexive Quantum adjacency matrices A;
@ projections e € B® B°P with t(e) = e and m(e) = 1;
@ operator systems S C B(L*(B)) which are B’-operator bimodules.
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Completely positive maps

Before we used ¥/ , - B(L%(B)) — B® B°P.

Theorem (BHINW, Matsuda)

The map Wém/z : B(L*(B)) — B ® B°P gives a bijection between maps
A: B — B which are completely positive, and positive elements
e € B® B°P. It restricts to a bijection between:
@ projections e € B® B°P;
Q@ CPmapsA: B— Bwithm(A® A)m* = A;
© linear maps A: B — B with m(A ® A)m* = A which are “real”,
meaning A(x*) = A(x)* for x € A.

The map V[ 12 is a generalisation of the Choi Matrix construction. This

result views A as a map on B, and not really on B(L%(B)). It also suggests
that the “real” condition is perhaps more natural than asking that A be
self-adjoint and “self-transpose”.
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Projections from diagrams

We follow the presentation of [Yamashita]. Introduce an inner-product on
B(L*(B)) by

(T4]T3) = (Ty, T2 € B(L*(B))).

This is not the usual (tracial) inner-product, unless 1\ is a trace.

Then the identification of B(L%(B)) with HS(L%(B)) becomes “twisted”.
Let B® B°P and B’ ® (B’)°P act on B(L%(B)) in the usual (operator
composition) way. Then the action on HS(L?(B)) also becomes twisted.
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Projections from diagrams (cont.)
We maintain a bijection between:

@ B’-bimodules S € B(L*(B));

@ B’ ® (B’)°P-invariant subspaces V C HS(L?(B));

© projections e € B® B°P.
However, now S and V are related in a way which involves the modular
conjugation.
If we use WE)']/Z to link a quantum adjacency matrix A with e € B® B°P,
then e is the projection onto V, and so we obtain an induced idempotent
map from B(L?(B)) onto S. This is simply

04: B(L%(B)) — B(L*(B)); I'— Gxﬂ

Conclude: ¥ 12 Seems the “natural” map; so maybe complete positivity /

“reality” is the “best” starting axiom?
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See https://github.com/MatthewDaws/Mathematics/tree/master/Quantum-Graphs for some

notes about the final 2 slides.
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