
An introduction to non-commutative graphs

Matthew Daws

Lancaster

Workshop on Quantum Graphs
Saarland University, Saarbrücken

Matthew Daws Quantum graphs February 2025 1 / 26



Motivation
A classical communication channel is modelled as follows:

Finite input alphabet X and finite output alphabet Y;
If x ∈ X is send down the channel, then y ∈ Y can be recieved with
probability p(y|x). So 0 ⩽ p(y|x) ⩽ 1,

∑
y p(y|x) = 1.

So x1, x2 ∈ X can be “confused” if there exists y ∈ Y with
p(y|x1)p(y|x2) > 0. This leads to the “confusability graph” of a channel:
vertices X and x1 ∼ x2 if they can be confused.

Example from the channel

©­­­­­«
0.5 0.2 0 0
0 0.8 0.4 0
0 0 0 1

0.5 0 0 0
0 0 0.6 0

ª®®®®®¬
We might care about the independence number.
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Quantum channels

A quantum state is a “density matrix”: a trace one positive-definite matrix
ρ ∈ Mn.

A pure state is ρ = |ψ⟩⟨ψ|. But states can also be “mixed”.
A quantum channel is a linear map T : Mn → Mm:

which sends density matrices to density matrices, so is positive, and
trace-preserving;
can be tensored and remains positive, so is completely positive.

It is reasonable to say that two states ρ1, ρ2 are “distinguishable” when
0 = tr(ρ1ρ2).

Question
When are two states ρ1, ρ2 distinguishable after being sent along a
quantum channel T?
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Kraus representation
A nice exercise using the Stinespring dilation construction gives us the
Kraus representation for a quantum channel T : Mn → Mm:

T(x) =
k∑

i=1

xixx∗i (x ∈ Mn),

for some linear maps xi : Cn → Cm. That T is trace-preserving is
equivalent to

∑
i x∗i xi = 1.

When is tr(T(ρ1)T(ρ2)) = 0? As T is positive, equivalently

tr
(
T(|ψ⟩⟨ψ|)T(|ϕ⟩⟨ϕ|)

)
= 0 (ψ ∈ Im(ρ1),ϕ ∈ Im(ρ2)).

But calculate:

0 =
∑

i,j

tr(xi|ψ⟩⟨ψ|x∗i xj|ϕ⟩⟨ϕ|x∗j ) =
∑

i,j

|(ψ|x∗i xjϕ)|2.

Equivalently, (ψ|x∗i xjϕ) = 0 for all i, j.
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Kraus representation
Conclusion
To decide if states (given by ψ and ϕ) are distinguishable after applying T,
we only need to know (ψ|xϕ) = 0 for each x ∈ lin{x∗i xj}.

So set 𝒮 = lin{x∗i xj} and consider:
𝒮 is a linear space, by construction;
x ∈ 𝒮 if and only if x∗ ∈ 𝒮;
1 ∈ 𝒮 (as

∑
i x∗i xi = 1).

So 𝒮 is an operator system.
A less obvious fact is that 𝒮 depends only on T, and not the chosen Kraus
representation.

Question
Let 𝒮1,𝒮2 be operator systems in Mn. Is 𝒮1 = 𝒮2 implied by

(ψ|xϕ) = 0 (x ∈ 𝒮1) ⇔ (ψ|xϕ) = 0 (x ∈ 𝒮2)?
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Classical case revisited
Channel from X to Y with conditional probabilities p(y|x). Encode as:

HX = ℓ2(X) with o.n. basis (ex); same from Y.
Define Kraus operators

Kxy : HX → HY ; ex ↦→ p(y|x)1/2ey, ez ↦→ 0 (z ≠ x).

Notice that

K∗
xy : HY → HX; ey ↦→ p(y|x)1/2ex, ew ↦→ 0 (w ≠ y).

Then the quantum channel T acts as

|ec⟩⟨ec| ↦→
∑
x,y

Kxy|ec⟩⟨ec|K∗
xy =

∑
y

p(y|c)|ey⟩⟨ey|.

So a pure state at c is sent to the linear combination of pure states at y,
weighted by the probability of obtaining y, given that c was sent.
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The associated operator system

Consider K∗
xyKwz. This is the operator

ew ↦→ p(z|w)1/2K∗
xyez = δy,zp(z|w)1/2p(y|x)1/2ex, et ↦→ 0 (t ≠ w).

So is 0, or a scalar multiple of |ex⟩⟨ew| if z = y and p(y|w)p(y|x) ≠ 0. So

𝒮 = lin{K∗
xyKwz} = lin{|ex⟩⟨ew| : ∃y, p(y|w)p(y|x) ≠ 0}.

Recall that the confusability graph has x ∼ w exactly when
p(y|w)p(y|x) ≠ 0 for some y. Writing ex,w for the matrix unit with a 1 in
the (x,w) entry,

𝒮 = lin{ex,w : x ∼ w},
the “operator system of the confusability graph”.
So. . . a “non-commutative graph” is an operator system in Mn. [Stahlke]
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Quantum relations
Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)
Let M ⊆ ℬ(H) be a von Neumann algebra. A quantum relation on M is a
weak∗-closed subspace S ⊆ ℬ(H) with M′SM′ ⊆ S. We say that the
relation is:

1 reflexive if M′ ⊆ S;
2 symmetric if S∗ = S where S∗ = {x∗ : x ∈ S};

3 transitive if S2 ⊆ S where S2 = lin
w∗
{xy : x, y ∈ S}.

When M = ℓ∞(X) ⊆ ℬ(ℓ2(X)) then M′ = ℓ∞(X), and M′SM′ ⊆ S means that
S is the weak∗-closed linear span of the matrix units it contains. So there is
a bijection between the usual meaning of “relation” on X and quantum
relations on M, given by

x ∼ y when ex,y ∈ S, S = lin
w∗
{ex,y : x ∼ y}.
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Operator bimodules

[Optional]
The condition that M′SM′ ⊆ S means that S is an operator bimodule over
M′.
(Not to be confused with Hilbert C∗-modules!)

We assume M ⊆ ℬ(H) and S ⊆ ℬ(H).
If M ⊆ ℬ(K) as well, we want a T ⊆ ℬ(K) corresponding to S.
This can be found by using the structure theory for normal
∗-homomorphisms θ : M → ℬ(K). Essentially θ is a dilation followed
by a cut-down in the commutant.
That S is a bimodule over M′ is needed to get this correspondence
with T.

So this notion is really independent of the choice of embedding
M ⊆ ℬ(H). [Weaver] gives an intrinsic notion just using M.
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Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, with:
undirected graphs corresponding to symmetric relations;
reflexive relations corresponding to having a “loop” at every vertex.

Definition (Weaver)
A quantum graph on a von Neumann algebra M ⊆ ℬ(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint, weak∗-closed
subspace S ⊆ ℬ(H), which is an M′-bimodule (M′SM′ ⊆ S).

If M = ℬ(H) with H finite-dimensional, then as M′ = C, a quantum graph
is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V, E) consider the {0, 1}-valued matrix A with

Ai,j =

{
1 : (i, j) ∈ E,
0 : otherwise,

the adjacency matrix of G.
A is idempotent for the Schur product;
G is undirected if and only if A is self-adjoint;
A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ℓ2(V). This is the GNS space for the
C∗-algebra ℓ∞(V) for the state induced by the uniform measure.
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General C∗-algebras

Let B be a finite-dimensional C∗-algebra, and let ψ be a faithful state on B,
with GNS space L2(B). Thus B bijects with L2(B) as a vector space, and so
we get:

The multiplication on B induces a map m : L2(B) ⊗ L2(B) → L2(B);
the Hilbert space structure now allows us to define
m∗ : L2(B) → L2(B) ⊗ L2(B).
The unit in B induces a map η : C → L2(B);
similarly we obtain η∗ : L2(B) → C, which is just φ.

We get an analogue of the Schur product:

x • y = m(x ⊗ y)m∗ (x, y ∈ ℬ(L2(B))).
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Graphical calculus
[I remain ambivalent about this!]
We use the graphical calculus / string diagrams. (See the book by Heunen
and Vicary.) Read bottom-to-top. Let

T = T

H1

H2

S = S

H2

H3

R = R

K1

K2

Composition is stacking; tensor product is juxtaposition.

S ◦ T =

T

S

H1

H3

T ⊗ R = T

H1

H2

R

K1

K2
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Elements of Frobenius algebras
The operators associated with (B,ψ) are

η =

C

B

, m =

B B

B

, ψ = η∗ =

C

B

, m∗ =

B B

B

.

Notice we identify B with L2(B) here.
For example, that m is an associative product can be encoded in diagrams
as

=

m(m ⊗ id) = m(id⊗m)
See [Matsuda] (where I borrow some Tikz code from!)
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Schur product

We can hence write the non-commutative Schur product as

x • y = m(x ⊗ y)m∗ = x y

There are various operators we can perform with diagrams– the graphical
calculus– but care needs to be taken if ψ is not a trace. I won’t say too
much more.

Definition
ψ is a δ-form (for a constant δ > 0) if
mm∗ = δ2 id.

= δ2
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Quantum adjacency matrices
Due to [Many authors]. A quantum adjacency matrix (operator / map) is
A ∈ ℬ(L2(B)) with:

• Schur product idempotent:
m(A ⊗ A)m∗ = A

A A = A

• A is self-adjoint: A∗ = A

• A is “self-transpose”:
(1 ⊗ η∗m)(1 ⊗ A ⊗ 1)(m∗η ⊗ 1) = A

A = A

• Is “reflexive” (has a loop at every vertex):
m(A ⊗ 1)m∗ = id

A =
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Subspaces to projections
Fix a finite-dimensional C∗-algebra (von Neumann algebra) B. A
“quantum graph” is either:

A subspace of ℬ(H) (where B ⊆ ℬ(H)) with some properties; or
An operator on L2(B) with some properties.

How do we move between these?
S ⊆ ℬ(H) is a bimodule over B′. As H is finite-dimensional, ℬ(H) is a
Hilbert space (just the Hilbert–Schmidt operators) for:

(x|y) = tr(x∗y).

Then B ⊗ Bop is represented on ℋ𝒮(H) via

π : B ⊗ Bop → ℬ(ℋ𝒮(H)); π(x ⊗ y) : T ↦→ xTy.

The commutant of π(B ⊗ Bop) is B′ ⊗ (B′)op.
An B′-bimodule of ℬ(H) corresponds to a B′ ⊗ (B′)op-invariant
subspace of the Hilbert space ℋ𝒮(H);
which corresponds to a projection in B ⊗ Bop.
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KMS states

As B is finite-dimensional, there is a positive, invertible Q ∈ B with

ψ(x) = tr(Qx) (x ∈ B),

where tr is your favourite faithful trace on B. Define

σiz(x) = QizxQ−iz (x ∈ B, z ∈ C).

This is the modular automorphism group; we have

ψ(xy) = tr(Qxy) = tr(yQx) = tr(QyQxQ−1) = ψ(yσ−i(x)) (x, y ∈ B).
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Operators to Algebras

Identify B with L2(B), so B has an inner-product (x|y) = ψ(x∗y). As B is
finite-dimensional, any operator on L2(B) is finite-rank, and so we have a
linear bijection

Ψ′
t,s : ℬ(L2(B)) → B ⊗ Bop; |b⟩⟨a| ↦→ σit(b) ⊗ σis(a)∗.

for any s, t ∈ R. (Here |b⟩⟨a| : c ↦→ ψ(a∗c)b.)

Lemma
The linear isomorphisms Ψ′

s,t are homomorphisms for the Schur product
on ℬ(L2(B)) and the usual product on B ⊗ Bop.

So A ∈ ℬ(L2(B)) being Schur idempotent gives that e = Ψ′
t,s(A) is

idempotent. What about the other axioms?

Matthew Daws Quantum graphs February 2025 19 / 26



Operators to Algebras 2
Let τ : B ⊗ Bop → B ⊗ Bop be the tensor swap map, an
anti-homomorphism.

Proposition
Let e = Ψ′

t,s(A) for some A ∈ ℬ(L2(B)). Then:
1 Ψ′

t,s(A∗) = (σi(t−s) ⊗ σi(t−s))τ(e∗);
2 Ψ′

t,s
(
(1 ⊗ η∗m)(1 ⊗ A ⊗ 1)(m∗η ⊗ 1)

)
= (σi(s+t−1) ⊗ σ−i(s+t))τ(e).

In particular, Ψ′
1/2,0 has:

1 Ψ′
1/2,0(A

∗) = (σi/2 ⊗ σi/2)τ(e∗);
2 Ψ′

1/2,0

(
(1 ⊗ η∗m)(1 ⊗ A ⊗ 1)(m∗η ⊗ 1)

)
= (σ−i/2 ⊗ σ−i/2)τ(e).

So a quantum adjacency matrix A gives e with

e = e2 = (σi/2 ⊗ σi/2)τ(e∗) = (σ−i/2 ⊗ σ−i/2)τ(e)
⇔ e = e∗ = e2 = τ(e) and (σz ⊗ σz)(e) = e (z ∈ C)
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The Proof

[Optional]

e = e2 = (σi/2 ⊗ σi/2)τ(e∗) = (σ−i/2 ⊗ σ−i/2)τ(e)
Firstly use σi/2(x∗) = σ−i/2(x)∗, so taking adjoint gives

e∗ = (σ−i/2 ⊗ σ−i/2)τ(e) = (σi/2 ⊗ σi/2)τ(e∗) = e.

Secondly use e∗ = (σi/2 ⊗ σi/2)τ(e∗) and e = e∗ to get

(σi/2⊗σi/2)τ(e) = e = (σ−i/2 ⊗ σ−i/2)τ(e)
=⇒ τ(e) = (σi ⊗ σi)τ(e) ⇔ e = (σi ⊗ σi)(e).

This uses that σi/2 ◦ σi/2 = σi.
So e = (Q−1 ⊗ Q)e(Q ⊗ Q−1) in B ⊗ Bop, and so e commutes with any
power of (Q ⊗ Q−1), that is, (σz ⊗ σz)(e) = e.
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Conclusions

We obtain bijections between:
1 Quantum adjacency matrices A;
2 projections e ∈ B⊗ Bop with τ(e) = e, (σz ⊗ σz)(e) = e for each z ∈ C;
3 subspaces 𝒮 ⊆ ℬ(L2(B)) which are B′-operator bimodules,

self-adjoint, and satisfy Q𝒮Q−1 = 𝒮.
That A is also reflexive corresponds to 𝒮 containing Q−1/2.

If ψ is a trace then we obtain bijections between:
1 reflexive Quantum adjacency matrices A;
2 projections e ∈ B ⊗ Bop with τ(e) = e and m(e) = 1;
3 operator systems 𝒮 ⊆ ℬ(L2(B)) which are B′-operator bimodules.
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Completely positive maps

Before we used Ψ′
1/2,0 : ℬ(L2(B)) → B ⊗ Bop.

Theorem (BHINW, Matsuda)
The map Ψ′

0,1/2 : ℬ(L2(B)) → B ⊗ Bop gives a bijection between maps
A : B → B which are completely positive, and positive elements
e ∈ B ⊗ Bop. It restricts to a bijection between:

1 projections e ∈ B ⊗ Bop;
2 CP maps A : B → B with m(A ⊗ A)m∗ = A;
3 linear maps A : B → B with m(A ⊗ A)m∗ = A which are “real”,

meaning A(x∗) = A(x)∗ for x ∈ A.

The map Ψ′
0,1/2 is a generalisation of the Choi Matrix construction. This

result views A as a map on B, and not really on ℬ(L2(B)). It also suggests
that the “real” condition is perhaps more natural than asking that A be
self-adjoint and “self-transpose”.
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Projections from diagrams

We follow the presentation of [Yamashita]. Introduce an inner-product on
ℬ(L2(B)) by

(T1|T2) =
T2

T∗
1

(T1, T2 ∈ ℬ(L2(B))).

This is not the usual (tracial) inner-product, unless ψ is a trace.
Then the identification of ℬ(L2(B)) with ℋ𝒮(L2(B)) becomes “twisted”.
Let B ⊗ Bop and B′ ⊗ (B′)op act on ℬ(L2(B)) in the usual (operator
composition) way. Then the action on ℋ𝒮(L2(B)) also becomes twisted.
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Projections from diagrams (cont.)
We maintain a bijection between:

1 B′-bimodules 𝒮 ⊆ ℬ(L2(B));
2 B′ ⊗ (B′)op-invariant subspaces V ⊆ ℋ𝒮(L2(B));
3 projections e ∈ B ⊗ Bop.

However, now 𝒮 and V are related in a way which involves the modular
conjugation.
If we use Ψ′

0,1/2 to link a quantum adjacency matrix A with e ∈ B ⊗ Bop,
then e is the projection onto V, and so we obtain an induced idempotent
map from ℬ(L2(B)) onto 𝒮. This is simply

θA : ℬ(L2(B)) → ℬ(L2(B)); T ↦→ A T

Conclude: Ψ′
0,1/2 seems the “natural” map; so maybe complete positivity /

“reality” is the “best” starting axiom?
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See https://github.com/MatthewDaws/Mathematics/tree/master/Quantum-Graphs for some

notes about the final 2 slides.
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