Quantum graphs and homomorphisms

Matthew Daws

UCLan

Mittag-Leffler Institute, June 2023

Graphs

- A graph consists of a (finite) set of vertices V and a collection of edges $E \subseteq V \times V$.
 - A graph is undirected if $(x, y) \in E \Leftrightarrow (y, x) \in E$.
 - We allow *self-loops*, that is, allow $(x, x) \in E$.

Notice that a graph G = (V, E) is exactly a *relation* on the set V. An undirected graph gives a symmetric relation; having a loop on each vertex gives a reflexive relation.

Quantum relations, a la Weaver, Kuperberg

Definition

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M'SM' \subseteq S$. The relation is:

- reflexive if $M' \subseteq S \ (\Leftrightarrow 1 \in S)$;
- 2 symmetric if $S^* = S$ where $S^* = \{x^* : x \in S\}$;

 ${old o}$ transitive if $S^2\subseteq S$ where $S^2=\overline{\lim}^{w^*}\{xy:x,y\in S\}.$

- Why a bimodule over M' and not M?
- There is a dependence on the embedding $M \subseteq \mathcal{B}(H) \dots$
- but as S is a bimodule over M', given a new embedding $M \subseteq \mathcal{B}(H_0)$ we get a canonical order preserving bijection between quantum relations in $\mathcal{B}(H)$ and those in $\mathcal{B}(H_0)$.

Weaver also has an "intrinsic" characterisation.

Quantum relations over a commutative algebra

Definition

A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M'SM' \subseteq S$.

Take $M = \ell^{\infty}(X) \subseteq \mathcal{B}(\ell^2(X))$ so M' = M.

- Think of $\mathcal{B}(\ell^2(X))$ as $X \times X$ matrices.
- Any $\ell^{\infty}(X)$ bimodule is spanned (weak^{*}) by the matrix units it contains.

So we obtain a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$S = \overline{ ext{lin}}^{w^*} \{ e_{x,y} : x \sim y \}, \ \{(x,y) : x \sim y \} = \{(x,y) : e_{x,y} \in S \}$$

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and

- undirected graph corresponds to a symmetric relation;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M'-bimodule $(M'SM' \subseteq S)$.

If $M = \mathcal{B}(H)$ with H finite-dimensional, then as $M' = \mathbb{C}$, a quantum graph is just an operator system: this was also explored by [Duan, Severini, Winter; Stahlke].

Adjacency matrices

Given a graph G = (V, E) consider the $\{0, 1\}$ -valued matrix A with

$$A_{i,j} = egin{cases} 1 & :(i,j)\in E, \ 0 & : ext{otherwise}, \end{cases}$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on $\ell^2(V)$. This is the GNS space for the C^* -algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^* -algebras

Let B be a finite-dimensional C^* -algebra, and let φ be a faithful state on B, with GNS space $L^2(B)$. Thus B bijects with $L^2(B)$ as a vector space, and so we get:

- The multiplication on B induces a map $m: L^2(B) \otimes L^2(B) \rightarrow L^2(B);$
- Using the inner product on L²(B) we can form m^{*}, and then interpret this as a map B → B ⊗ B;
- The unit in B induces a map $\eta : \mathbb{C} \to L^2(B)$;
- Again form η^* , but notice this is just $\varphi: B \to \mathbb{C}$.

We get an analogue of the Schur product:

$$x ullet y = m(x \otimes y)m^* \qquad (x,y \in \mathcal{B}(L^2(B))).$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}(L^2(B))$ with:

• $m(A \otimes A)m^* = A$ (so Schur product idempotent);

$${ 2 \hspace{-.1in} 0 \hspace{.1in} (1 \otimes \eta^* m) (1 \otimes A \otimes 1) (m^* \eta \otimes 1) = A ; }$$

3)
$$m(A \otimes 1)m^* = \mathrm{id}$$
 (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

I want to sketch why this definition is equivalent to the previous notion of a "quantum graph".

Subspaces to projections

Fix a finite-dimensional C^* -algebra (von Neumann algebra) M. Start with $S \subseteq \mathcal{B}(H)$ is a bimodule over M'. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

 $(x|y) = \operatorname{tr}(x^*y).$

Then $M \otimes M^{op}$ is represented on $\mathcal{B}(H)$ via

 $\pi: M \otimes M^{\operatorname{op}} \to \mathcal{B}(\mathcal{B}(H)); \quad \pi(x \otimes y): T \mapsto xTy.$

- The commutant of $\pi(M \otimes M^{op})$ is naturally $M' \otimes (M')^{op}$.
- So an M'-bimodule of $\mathcal{B}(H)$ corresponds to an $M' \otimes (M')^{\text{op}}$ -invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a *projection* in $M \otimes M^{op}$.

Operators to algebras

So how can we relate:

Operators $A \in \mathcal{B}(L^2(M))$ with Projections in $M \otimes M^{op}$?

Recall the GNS construction for a (faithful) tracial state ψ on M:

$$\Lambda: M o L^2(M); \quad (\Lambda(x)|\Lambda(y)) = \psi(x^*y).$$

As $L^2(M)$ is finite-dimensional, Λ is bijective, and every operator on $L^2(M)$ is a linear combination of rank-one operators of the form

$$heta_{\Lambda(a),\Lambda(b)}: \xi\mapsto (\Lambda(a)|\xi)\Lambda(b) \qquad (\xi\in L^2(M)).$$

Define a bijection

$$\Psi: \mathcal{B}(L^2(M)) \to M \otimes M^{\operatorname{op}}; \quad \theta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$$

and extend by linearity!

Operators to algebras 2

 $\Psi: \mathcal{B}(L^2(M)) \to M \otimes M^{\operatorname{op}}; \quad \theta_{\Lambda(a),\Lambda(b)} = b \otimes a^*,$

- Ψ is a homomorphism for the "Schur product" on $\mathcal{B}(L^2(M))$, recall $A_1 \bullet A_2 = m(A_1 \otimes A_2)m^*$;
- $A \mapsto (1 \otimes \eta^* m)(1 \otimes A \otimes 1)(m^* \eta \otimes 1)$ transformed by Ψ to the anti-homomorphism $\sigma: a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^*$ corresponds to $e \mapsto \sigma(e)^*$.

Let A be a quantum adjacency matrix, and set $e = \Psi(A)$. Then:

$$e^2 = e, \qquad \sigma(e) = e, \qquad e = \sigma(e)^*$$

So e is a projection with $e = \sigma(e)$. BUT: There is no clean one-to-one correspondence between the axioms.

Non-tracial case

Some partial references: [Musto, Reutter, Verdon], [Gromada], [Chirvasitu, Wasilewski], [Matsuda], [BCEHPSM].

If the functional ψ on M is not tracial, then this correspondence fails. (But see [Matsuda].)

However:

Theorem (D.)

There is a bijection between:

- "Schur idempotent", self-adjoint operators A on $L^2(M)$;
- $e \in M \otimes M^{\mathrm{op}}$ with $e^2 = e$ and $e = \sigma(e)^*$;
- self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ such that there is another self-adjoint M'-bimodule S_0 with $S \oplus S_0 = \mathcal{B}(H)$

KMS States

Any faithful state ψ is KMS: there is an automorphism σ' of M with

$$\psi(ab) = \psi(b\sigma'(a)) \qquad (a, b \in M).$$

Indeed, there is $Q \in M$ positive and invertible with

$$\psi(a) = \operatorname{tr}(Qa) \qquad \sigma'(a) = QaQ^{-1}.$$

Theorem (D.)

Twisting our bijection Ψ using σ' allows us to establish a bijection between:

• $A \in \mathcal{B}(L^2(M))$ self-adjoint with axioms (1) and (2);

• projections $e \in M \otimes M^{op}$ with $e = \sigma(e)$ and $(\sigma' \otimes \sigma')(e) = e$;

• self-adjoint M'-bimodules $S \subseteq \mathcal{B}(H)$ with $QSQ^{-1} = S$.

So this is more restrictive than the tracial case.

Matthew Daws

Complete positivity and reality

Following [Chirvasitu, Wasilewski].

Definition (Matsuda)

Let $A \in \mathcal{B}(L^2(M))$ be interpretted as the linear map $A_0: M \to M$. We say that A is *real* when $A_0(x^*) = A_0(x)^*$ for $x \in M$.

Theorem (D.)

A bijection similar to Ψ , again twisting by KMS $\frac{1}{2}$ -automorphism, gives a bijection between:

- A_0 being completely positive with $m(A \otimes A)m^* = A;$
- A being real with $m(A \otimes A)m^* = A$.

Similarly, we can look a A being self-adjoint and with axiom (2). Arguably, this "reality" condition is more natural than being self-adjoint and satisfying axiom (2).

Pullbacks

Let $\theta: M \to N$ be a normal CP map between von Neumann algebras $M \subseteq \mathcal{B}(H_M)$ and $N \subseteq \mathcal{B}(H_N)$. The Stinespring dilation tales a special form:

- there is K and $U: H_N \to H_M \otimes K$;
- $\theta(x) = U^*(x \otimes 1) U$ for $x \in M \subseteq \mathcal{B}(H_M)$;
- there is a normal *-homomorphism $\rho: N' \to H_M \otimes K$ with $Ux' = \rho(x') U$ for $x' \in N'$.

Given $S \subseteq \mathcal{B}(H_M)$ a Quantum (Graph/Relation) over M, define

$$\overleftarrow{S} = ext{weak}^* ext{-closure}\{U^*xU: x \in S\overline{\otimes}\mathcal{B}(K)\}.$$

Use of ρ shows that \overleftarrow{S} is a Quantum (Graph/Relation) over N, the "pullback". [Weaver; D.]

Pullbacks: Kraus forms; Pushfowards

When M, N are finite-dimensional, $\theta: M \to N$ has a Kraus form

$$\theta(x) = \sum_{i=1}^n b_i^* x b_i.$$

(Notice I have swapped to considering UCP maps, not TPCP maps.) Then we recover Weaver's original definition $S \subseteq \mathcal{B}(H_M)$

$$\overleftarrow{S} = ext{lin} \{ b_i^* x b_j : x \in S_1 \}.$$

Given $S_2 \subseteq \mathcal{B}(H_N)$ a quantum relation over N, also

$$\overrightarrow{S_2} = \mathrm{lin}\{b_i x b_j^* : x \in S_2\}$$

is a quantum relation over M, the "pushforward".

Homomorphisms

[Stahkle] defines $\theta: M \to N$ to be a homomorphism between S_1 and S_2 when $\overrightarrow{S_2} \subseteq S_1$. [Weaver] calls this a *CP*-morphism.

Theorem (Stahkle)

Let $\theta: C(V_H) \to C(V_G)$ be a UCP map giving a homomorphism G to H (that is, with $\overrightarrow{S_G} \subseteq S_H$). Then there is some map $f: V_G \to V_H$ which is a (classical) homomorphism.

- In general θ need not be directly related to f.
- However, often we just care about the *existence* of a homomorphism.
- E.g. a k-colouring of G corresponds to some homomorphism $G \to K_k$, the complete graph.

Questions

Take S = M' and $\theta: M \to N$ and form the pullback \overleftarrow{S} , a quantum graph over N.

- Which quantum graphs can so arise?
- [Duan] shows that for $N=\mathbb{M}_n$ all quantum graphs arise in this way.

[Brannan, Ganesan, Harris] consider a "quantum to classical" game which ends up with a stronger notion of "homomorphism".

Here we have worked exclusively with the operator bimodule picture of Quantum Graphs.

• Can we say something useful about homomorphisms and "adjacency matrices"?

M. Daws, "Quantum graphs: different perspectives, homomorphisms and quantum automorphisms", arXiv:2203.08716 [math.OA].