Quantum graphs and homomorphisms

Matthew Daws

UCLan
Mittag-Leffler Institute, June 2023

Graphs

A graph consists of a (finite) set of vertices V and a collection of edges $E \subseteq V \times V$.

- A graph is undirected if $(x, y) \in E \Leftrightarrow(y, x) \in E$.
- We allow self-loops, that is, allow $(x, x) \in E$.

Notice that a graph $G=(V, E)$ is exactly a relation on the set V. An undirected graph gives a symmetric relation; having a loop on each vertex gives a reflexive relation.

Quantum relations, a la Weaver, Kuperberg

Definition

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M^{\prime} S M^{\prime} \subseteq S$.
The relation is:
(1) reflexive if $M^{\prime} \subseteq S \quad(\Leftrightarrow 1 \in S)$;
(2) symmetric if $S^{*}=S$ where $S^{*}=\left\{x^{*}: x \in S\right\}$;
(3) transitive if $S^{2} \subseteq S$ where $S^{2}=\varlimsup^{w^{*}}\{x y: x, y \in S\}$.

- Why a bimodule over M^{\prime} and not M ?
- There is a dependence on the embedding $M \subseteq \mathcal{B}(H) \ldots$
- but as S is a bimodule over M^{\prime}, given a new embedding $M \subseteq \mathcal{B}\left(H_{0}\right)$ we get a canonical order preserving bijection between quantum relations in $\mathcal{B}(H)$ and those in $\mathcal{B}\left(H_{0}\right)$.
Weaver also has an "intrinsic" characterisation.

Quantum relations over a commutative algebra

Definition

A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M^{\prime} S M^{\prime} \subseteq S$.

Take $M=\ell^{\infty}(X) \subseteq \mathcal{B}\left(\ell^{2}(X)\right)$ so $M^{\prime}=M$.

- Think of $\mathcal{B}\left(\ell^{2}(X)\right)$ as $X \times X$ matrices.
- Any $\ell^{\infty}(X)$ bimodule is spanned (weak*) by the matrix units it contains.

So we obtain a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$
\begin{gathered}
S=\varlimsup^{w^{*}}\left\{e_{x, y}: x \sim y\right\} \\
\{(x, y): x \sim y\}=\left\{(x, y): e_{x, y} \in S\right\}
\end{gathered}
$$

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and

- undirected graph corresponds to a symmetric relation;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M^{\prime}-bimodule $\left(M^{\prime} S M^{\prime} \subseteq S\right)$.

If $M=\mathcal{B}(H)$ with H finite-dimensional, then as $M^{\prime}=\mathbb{C}$, a quantum graph is just an operator system: this was also explored by [Duan, Severini, Winter; Stahlke].

Adjacency matrices

Given a graph $G=(V, E)$ consider the $\{0,1\}$-valued matrix A with

$$
A_{i, j}= \begin{cases}1 & :(i, j) \in E \\ 0 & : \text { otherwise }\end{cases}
$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1 s down the diagonal when G has a loop at every vertex. We can think of A as an operator on $\ell^{2}(V)$. This is the GNS space for the C^{*}-algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^{*}-algebras

Let B be a finite-dimensional C^{*}-algebra, and let φ be a faithful state on B, with GNS space $L^{2}(B)$. Thus B bijects with $L^{2}(B)$ as a vector space, and so we get:

- The multiplication on B induces a map $m: L^{2}(B) \otimes L^{2}(B) \rightarrow L^{2}(B)$;
- Using the inner product on $L^{2}(B)$ we can form m^{*}, and then interpret this as a map $B \rightarrow B \otimes B$;
- The unit in B induces a map $\eta: \mathbb{C} \rightarrow L^{2}(B)$;
- Again form η^{*}, but notice this is just $\varphi: B \rightarrow \mathbb{C}$.

We get an analogue of the Schur product:

$$
x \bullet y=m(x \otimes y) m^{*} \quad\left(x, y \in \mathcal{B}\left(L^{2}(B)\right)\right)
$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}\left(L^{2}(B)\right)$ with:
(1) $m(A \otimes A) m^{*}=A$ (so Schur product idempotent);
(2) $\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)=A$;
(3) $m(A \otimes 1) m^{*}=\mathrm{id}$ (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".
I want to sketch why this definition is equivalent to the previous notion of a "quantum graph".

Subspaces to projections

Fix a finite-dimensional C^{*}-algebra (von Neumann algebra) M. Start with $S \subseteq \mathcal{B}(H)$ is a bimodule over M^{\prime}. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

$$
(x \mid y)=\operatorname{tr}\left(x^{*} y\right)
$$

Then $M \otimes M^{\mathrm{op}}$ is represented on $\mathcal{B}(H)$ via

$$
\pi: M \otimes M^{\circ p} \rightarrow \mathcal{B}(\mathcal{B}(H)) ; \quad \pi(x \otimes y): T \mapsto x T y
$$

- The commutant of $\pi\left(M \otimes M^{\mathrm{op}}\right)$ is naturally $M^{\prime} \otimes\left(M^{\prime}\right)^{\mathrm{op}}$.
- So an M^{\prime}-bimodule of $\mathcal{B}(H)$ corresponds to an $M^{\prime} \otimes\left(M^{\prime}\right)^{\text {op }}$-invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- Which corresponds to a projection in $M \otimes M^{\circ p}$.

Operators to algebras

So how can we relate:
Operators $A \in \mathcal{B}\left(L^{2}(M)\right) \quad$ with \quad Projections in $M \otimes M^{\mathrm{op}}$?
Recall the GNS construction for a (faithful) tracial state ψ on M :

$$
\Lambda: M \rightarrow L^{2}(M) ; \quad(\Lambda(x) \mid \Lambda(y))=\psi\left(x^{*} y\right)
$$

As $L^{2}(M)$ is finite-dimensional, Λ is bijective, and every operator on $L^{2}(M)$ is a linear combination of rank-one operators of the form

$$
\theta_{\wedge(a), \wedge(b)}: \xi \mapsto(\Lambda(a) \mid \xi) \wedge(b) \quad\left(\xi \in L^{2}(M)\right)
$$

Define a bijection

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad \theta_{\wedge(a), \wedge(b)}=b \otimes a^{*}
$$

and extend by linearity!

Operators to algebras 2

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad \theta_{\wedge(a), \wedge(b)}=b \otimes a^{*}
$$

- Ψ is a homomorphism for the "Schur product" on $\mathcal{B}\left(L^{2}(M)\right)$, recall $A_{1} \bullet A_{2}=m\left(A_{1} \otimes A_{2}\right) m^{*}$;
- $A \mapsto\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)$ transformed by Ψ to the anti-homomorphism $\sigma: a \otimes b \mapsto b \otimes a$;
- $A \mapsto A^{*}$ corresponds to $e \mapsto \sigma(e)^{*}$.

Let A be a quantum adjacency matrix, and set $e=\Psi(A)$. Then:

$$
e^{2}=e, \quad \sigma(e)=e, \quad e=\sigma(e)^{*}
$$

So e is a projection with $e=\sigma(e)$. But: There is no clean one-to-one correspondence between the axioms.

Non-tracial case

Some partial references: [Musto, Reutter, Verdon], [Gromada], [Chirvasitu, Wasilewski], [Matsuda], [BCEHPSM].
If the functional ψ on M is not tracial, then this correspondence fails.
(But see [Matsuda].)
However:

Theorem (D.)

There is a bijection between:

- "Schur idempotent", self-adjoint operators A on $L^{2}(M)$;
- $e \in M \otimes M^{\circ p}$ with $e^{2}=e$ and $e=\sigma(e)^{*}$;
- self-adjoint M^{\prime}-bimodules $S \subseteq \mathcal{B}(H)$ such that there is another self-adjoint M^{\prime}-bimodule S_{0} with $S \oplus S_{0}=\mathcal{B}(H)$

KMS States

Any faithful state ψ is KMS: there is an automorphism σ^{\prime} of M with

$$
\psi(a b)=\psi\left(b \sigma^{\prime}(a)\right) \quad(a, b \in M)
$$

Indeed, there is $Q \in M$ positive and invertible with

$$
\psi(a)=\operatorname{tr}(Q a) \quad \sigma^{\prime}(a)=Q a Q^{-1}
$$

Theorem (D.)

Twisting our bijection Ψ using σ^{\prime} allows us to establish a bijection between:

- $A \in \mathcal{B}\left(L^{2}(M)\right)$ self-adjoint with axioms (1) and (2);
- projections $e \in M \otimes M^{\mathrm{op}}$ with $e=\sigma(e)$ and $\left(\sigma^{\prime} \otimes \sigma^{\prime}\right)(e)=e$;
- self-adjoint M^{\prime}-bimodules $S \subseteq \mathcal{B}(H)$ with $Q S Q^{-1}=S$.

So this is more restrictive than the tracial case.

Complete positivity and reality

Following [Chirvasitu, Wasilewski].

Definition (Matsuda)

Let $A \in \mathcal{B}\left(L^{2}(M)\right)$ be interpretted as the linear map $A_{0}: M \rightarrow M$. We say that A is real when $A_{0}\left(x^{*}\right)=A_{0}(x)^{*}$ for $x \in M$.

Theorem (D.)

A bijection similar to Ψ, again twisting by KMS $\frac{1}{2}$-automorphism, gives a bijection between:

- A_{0} being completely positive with $m(A \otimes A) m^{*}=A$;
- A being real with $m(A \otimes A) m^{*}=A$.

Similarly, we can look a A being self-adjoint and with axiom (2). Arguably, this "reality" condition is more natural than being self-adjoint and satisfying axiom (2).

Pullbacks

Let $\theta: M \rightarrow N$ be a normal CP map between von Neumann algebras $M \subseteq \mathcal{B}\left(H_{M}\right)$ and $N \subseteq \mathcal{B}\left(H_{N}\right)$. The Stinespring dilation tales a special form:

- there is K and $U: H_{N} \rightarrow H_{M} \otimes K$;
- $\theta(x)=U^{*}(x \otimes 1) U$ for $x \in M \subseteq \mathcal{B}\left(H_{M}\right)$;
- there is a normal $*$-homomorphism $\rho: N^{\prime} \rightarrow H_{M} \otimes K$ with $U x^{\prime}=\rho\left(x^{\prime}\right) U$ for $x^{\prime} \in N^{\prime}$.
Given $S \subseteq \mathcal{B}\left(H_{M}\right)$ a Quantum (Graph/Relation) over M, define

$$
\overleftarrow{S}=\text { weak }^{*} \text {-closure }\left\{U^{*} x U: x \in S \bar{\otimes} \mathcal{B}(K)\right\}
$$

Use of ρ shows that \overleftarrow{S} is a Quantum (Graph/Relation) over N, the "pullback". [Weaver; D.]

Pullbacks: Kraus forms; Pushfowards

When M, N are finite-dimensional, $\theta: M \rightarrow N$ has a Kraus form

$$
\theta(x)=\sum_{i=1}^{n} b_{i}^{*} x b_{i}
$$

(Notice I have swapped to considering UCP maps, not TPCP maps.)
Then we recover Weaver's original definition $S \subseteq \mathcal{B}\left(H_{M}\right)$

$$
\overleftarrow{S}=\operatorname{lin}\left\{b_{i}^{*} x b_{j}: x \in S_{1}\right\}
$$

Given $S_{2} \subseteq \mathcal{B}\left(H_{N}\right)$ a quantum relation over N, also

$$
\overrightarrow{S_{2}}=\operatorname{lin}\left\{b_{i} x b_{j}^{*}: x \in S_{2}\right\}
$$

is a quantum relation over M, the "pushforward".

Homomorphisms

[Stahkle] defines $\theta: M \rightarrow N$ to be a homomorphism between S_{1} and S_{2} when $\overrightarrow{S_{2}} \subseteq S_{1}$. [Weaver] calls this a CP-morphism.

Theorem (Stahkle)

Let $\theta: C\left(V_{H}\right) \rightarrow C\left(\underline{V}_{G}\right)$ be a UCP map giving a homomorphism G to H (that is, with $\overrightarrow{S_{G}} \subseteq S_{H}$). Then there is some map
$f: V_{G} \rightarrow V_{H}$ which is a (classical) homomorphism.

- In general θ need not be directly related to f.
- However, often we just care about the existence of a homomorphism.
- E.g. a k-colouring of G corresponds to some homomorphism $G \rightarrow K_{k}$, the complete graph.

Questions

Take $S=M^{\prime}$ and $\theta: M \rightarrow N$ and form the pullback \overleftarrow{S}, a quantum graph over N.

- Which quantum graphs can so arise?
- [Duan] shows that for $N=\mathbb{M}_{n}$ all quantum graphs arise in this way.
[Brannan, Ganesan, Harris] consider a "quantum to classical" game which ends up with a stronger notion of "homomorphism".

Here we have worked exclusively with the operator bimodule picture of Quantum Graphs.

- Can we say something useful about homomorphisms and "adjacency matrices"?
M. Daws, "Quantum graphs: different perspectives, homomorphisms and quantum automorphisms", arXiv:2203.08716 [math.OA].

