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Graphs

A graph consists of a (finite) set of vertices V' and a collection of edges
ECVxV.

vV = {AB,C} say, and F
{(A’ )) (B) C)’(C)B)’(C)‘A)}’

So a graph G = (V, E) is nothing but a relation on the set V.
@ In general not reflexive (unless every vertex has a self-loop);
o Symmetric when G is undirected,;

o Rarely transitive.
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Channels

A channel sends an input message (element of a finite set A) to an

output message (element of a finite set B) perhaps with noise so that

there is a probability that a € A is mapped to various different b € B.
p(bla) = probability that b is received given that a was sent

Define a (simple, undirected) graph structure on A by
(a1, ap) an edge when p(bla;)p(blag) > 0 for some b.

This is the confusability graph of the channel.

If we want to communicate with zero error then we seek a maximal
independent setin A: a maximal subset of A which cannot be
confused.
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Physics notation

I will follow physics notation, so inner products (:|-) are linear on the
right.

@ Use bra-ket notation: [{) is a vector in a Hilbert space H, and (1|
is a member of the dual space, identified with the conjugate H.

e Then (Y|dp) = (W|d) the inner-product. ..
e and |d) (1| is the rank-one operator H — H; o +— (P|a)d.
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Quantum Mechanics

Definition
A state is a unit vector ) in a (finite dim) Hilbert space H. J

Multiplying a state by a unit modulus complex number doesn’t change
the physics. One way to deal with this is to identify a state with the
rank-one projection [\p) (1.

Definition J

A density is a positive, trace one operator p € B(H).

@ So a rank-one density is a state; we call a general density a mized
state.

@ Mathematically, using trace-duality, a density is nothing but a
(normal) state on the C*-algebra B(H).
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Quantum channels

Definition

A (quantum) channel is a trace-preserving, completely positive
(CPTP) map B(Hy) — B(Hg).

@ positive and trace-preserving so it maps densities to densities;

@ completely positive so you can tensor with another system and
still have positivity.

Theorem (Stinespring)

A lhinear map 0: A — B(H), from a C*-algebra A, is completely
positive if and only if it admaits a dilation of the form

0(a)=V*n(a)V (a € A)

form: A — B(K) a x-homomorphism, and V : H — K a bounded
linear map.

Matthew Daws Quantum Graphs May 2024 6 /46




Stinespring and Kraus

Any CP map & : B(Hy) — B(Hg) has the form
&(z)=V'n(z)V  (z € B(Ha)),

where V : Hg — K, and m: B(H4) — B(K) is a *-representation.
@ Any such 7t is of the form 7(z) =z ® 1 where K = Hy ® K'.

o Take an o.n. basis (e;) for K’ so V(&) =} ;, K;(&) ® e; for some
operators K; : Hy — Hp.

We arrive at the Kraus form:

E(z) =) KiK; (z € B(Hy).

Trace-preserving if and only if } , K K; = 1.
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Quantum zero-error

We turn B(H) into a Hilbert space using the trace: (T'S) = tr(T*S).

A sensible notion of when densities p, o are distinguishable is when
they are orthogonal.

Let E(z) =) ; K;zK," be a quantum channel. We wish to consider
when £(p) L €(o). As € is positive, this is equivalent to

E()(WD) L E(ld)(dl) (W € Imagep, d € Image o).
Equivalently

0= tr (E(W)(WNE(ID) () Ztr (Kb (WI K K d) (DK )
= Z| (WIK; Klb) P
1,J

which is equivalent to (|K;" Kj|$) = 0 for each 1, 7.
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To operator systems
So VP, ¢ are distinguishable after applying & when
(Q|T|dp) =0 foreach T € lin{K;K;}.

Set 8§ = lin{K" K} which has the properties:
@ 8 is a linear subspace;
o T €8 if and only if T* € §;
ele8(as) K K;=1as € is CPTP).
That is, 8 is an operator system, which depends only on € and not the
choice of (Kj).
Theorem (Duan)

For any operator system & C B(H,) there is some quantum
channel € : B(Hy) — B(Hp) giving Tise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(bla), we
encode this as follows:

o Let Hy = (?(A) with o.n. basis {|a) : a € A}; and the same for B.
@ Define Kraus operators

Koy = p(bla)/?[b)(a| : Hy — Hp.

Then € : p — Za)b Kawp K}, sends a pure state |c)(c| to

ZKablc clKab—Zp bla)|b)(alc)(cla)(b] = Zp blc)|b)(

ab ab

That is, the combination of pure states which can be received, given
that message ¢ was sent.
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The associated operator system
The Kraus operators are
Ko = p(bla)Y/?|b)(al : Hy — Hp.

Hence

S = lin{ K, Koa = lin{p(bla)/2p(d|c)"/?a) (bld) (cl}
— lin{p(bla)"/2p(blc)/2|a) (cl}

= lin{la)(c|: a ~ ¢},

where a ~ c exactly when p(bla)p(blc) > 0 for some b.

Thus § is directly linked to the confusability graph of the channel: it is
the span of the matrix units e, for each edge (a, c) in the graph.
(Notice here our “graphs” are finite, simple, but we allow (single,
unoriented) loops at vertices.)

Matthew Daws Quantum Graphs May 2024 11/46



Quantum relations

Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)

Let M C B(H) be a von Neumann algebra. A quantum relation on M
is a weak*-closed subspace S C B(H) with M'SM’ C S. We say that
the relation is:

Q reflezive if M’ C S,
@ symmetricif S* =S where S* ={z*:z € S};
@ transitive if $? C S where S? = mw*{my cz,y € Sh

When M = (*®(X) C B({?(X)) there is a bijection between the usual
meaning of “relation” on X and quantum relations on M, given by

z ~y when e; , € S, S = ﬁw*{ex,y tT~yh
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Operator bimodules

The condition that M/SM’ C S means that S is an operator
bimodule over M'.

(Not to be confused with Hilbert C*-modules!)
@ We assume M C B(H) and S C B(H).

o If M C B(K) as well, we of course want a T' C B(K)
corresponding to S.

@ This can be found by using the structure theory for normal
x-homomorphisms 0 : M — B(K). Essentially 0 is a dilation
followed by a cut-down in the commutant.

@ That S is a bimodule over M’ is needed to get this
correspondence with T.

So this notion is really independent of the choice of embedding

M C B(H). [Weaver]| gives an intrinsic notion just using M.
May 2024
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Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and as:
@ undirected graphs correspond to symmetric relations;

@ a reflexive relation corresponds to having a “loop” at every vertex.

Definition (Weaver)

A gquantum graph on a von Neumann algebra M C B(H) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak*-closed subspace S C B(H), which is an M’-bimodule

(M'SM’ C S).

If M = B(H) with H finite-dimensional, then as M’ = C, a quantum
graph is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V, F) consider the {0, 1}-valued matrix A with

1 :(2,7) € E,
Am:{ (4,)

0 :otherwise,

the adjacency matriz of G.
o A is idempotent for the Schur product;
o G is undirected if and only if A is self-adjoint;
@ A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ¢?( V). This is the GNS space for
the C*-algebra (*°( V') for the state induced by the uniform measure.
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General C*-algebras

Let B be a finite-dimensional C*-algebra, and let ¢ be a faithful state

on B, with GNS space L?(B). Thus B bijects with L?(B) as a vector
space, and so we get:

@ The multiplication on B induces a map
m: L?(B) ® L?(B) — L?(B);

o the Hilbert space structure now allows us to define
m* : L?(B) — [*(B) ® L?(B).

@ The unit in B induces a map 1 : C — L?(B);
e similarly we obtain n* : L?(B) — C, which is just .
We get an analogue of the Schur product:

zey=m(z®y)m* (z,y € B(L?(B))).
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Quantum adjacency matrix

Definition (Many authors)

A gquantum adjacency matriz is a self-adjoint A € B(L?(B)) with:
e m(A® A)m* = A (so Schur product idempotent);
o (1M (1®A®1)(mMM®1)=A4,

o m(A®1)m* =id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to
“undirected”.
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Subspaces to projections

Fix a finite-dimensional C*-algebra (von Neumann algebra) M. A
“quantum graph” is either:

o A subspace of B(H) (where M C B(H)) with some properties; or
@ An operator on L?(M) with some properties.
How do we move between these?
S C B(H) is a bimodule over M’. As H is finite-dimensional, B(H) is
a Hilbert space for
(zly) = tr(z™y).
Then M ® M°P is represented on B(H) via

n:M®MP—B(B(H)), nlzxy):T—zTy.

@ The commutant of (M ® M°P)is M’ @ (M')°P.
@ An M'-bimodule of B(H) corresponds to an
M’ ® (M')°P-invariant subspace of the Hilbert space B(H);
@ which corresponds to a projection in M @ M°P.
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Operators to algebras

So how can we relate:
e Operators A € B(L?*(M));
o Projections in M ® M°P?

O O
1 o 1)
= = =
@, O

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state { on M:
A M — LP(M); (Al2)A(y) = b(z"y).

As L?(M) is finite-dimensional, every operator on L?(M) is a linear
combination of rank-one operators. So we may define a bijection

V:B(LA(M)) = M ® M°; |A(b)){A(a)] — b® a*,

and extend by linearity!
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Operators to algebras 3

V:B(LA(M)) = M ® M, |A(b)){A(a) — b® a*,

@ V¥ is a homomorphism for the “Schur product”
A; e Ay = m(A; ® Ax)m™;

e A~ (1" m)(1® A®1)(m*n ® 1) corresponds to the
anti-homomorphism 0: a® b — b ® a on M & M°P;
o A A* corresponds to e — o(e)*.

Conclude: A quantum adjacency matrix corresponds to an idempotent
e € M ® M°P with o(e) = e and o(e)* = e.

That is, a projection e with o(e) = e.

BuT: There is no clean one-to-one correspondence between the axioms.
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KMS States

Any faithful state { is KMS: there is an automorphism o’ of M with
Y(ad) =P(bo’(a))  (a,be M).

Indeed, there is Q € M positive and invertible with
P(a) =tr(Qa)  o'(a) = QaQ .

Theorem (D.)

Twisting our bijection ¥ using o’ allows us to establish a bijection
between:

e Quantum adjacency operators A € B(L*(M));
@ projections e € M @ M°P with e = o(e) and (o' ® 0’)(e) = e;
e self-adjoint M'-bimodules S C B(H) with QSQ~ ! = S.

So this is more restrictive than the tracial case.
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Invariance under the modular automorphism

Why do we end up with (¢’ ® ¢’)(e) = e?
@ The “middle axiom” is a bit mysterious: we already assume that A
is self-adjoint, and shouldn’t this alone correspond to the graph
being undirected? (Both conditions together is a bit strong.)

o [Matsuda] looked at a different condition, that of A being “real”
which means that A : L?(B) — L?(B), thought of as a map
B — B, is x-preserving.

o [D.] showed that replacing “self-adjoint and axiom (2)” with “real”
gives a simple bijection with projections.

o [Wasilewski] has recently shown that looking at “KMS
inner-products” not “GNS inner-products” is a nice framework to
view this in.

(However, we are stuck with the existing literature.)
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Towards homomorphisms
Let Bj, Bz be finite-dimensional C*-algebras (maybe just B; = B(H;)),
and let 8 : By — Bs be a CPTP map with Kraus form

n
0(z) =) b.ab;.
1=1

For : = 1,2 let B; C B(H;) and let S; C B(H;) be a quantum
graph/relation over B;.

Definition (Weaver)
The pushforward of Sy is

Sy = Bj-bimodule {b,zb : € S1,1 < 1,5 < n}.

The pullback of S5 is
5, = B]-bimodule {b}yb; : y € 55,1 < 1,5 < nl.
E——




Motivation
Let G =(Vg, Eg), H = (Vy, Eg) be graphs.
@ For f: Vg — Vg a map, define
0:C(Vyg)— C(Vg),
0(a)(u) =a(f(u))  (u€ Vg,a € C(Vg)).

@ So 0 is a *-homomorphism, in particular, a UCP map.

We find a Kraus form for 0. Given z € Vy there might be many (or

none!) u € Vg with f(u) = z; enumerate the u in some way. Define
b : *(Vg) — (V) by

b; (04) = bz if u is the ith vertex with f(u) = z.
Then indeed

D babi(8.) = alf(w)) =0(a)(8,)  (a€ C(Vi),ue Vo).
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CPTP maps
These (b;) satisfy the pleasing fact that

Z bieub; =eru)  (u€ Vg),
B

where e, € {*°( V) is the minimal projection. So we also obtain a
TPCP map 0: C(Vg) — C(Vg).

The operator system associated to G is

Sg = lin{ey, : (u,v) € Eg} C My,.
Then, using @,
=7 .
Sg = ||n{ef(u)’f(v) : (u,’u) € Eg}.
Similarly, given Sy, we find that
5y = linfeu,y : (f(w), £(v)) € Bnl.
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Homomorphisms

=5 .
Sa = ||n{ef(u))f(v) : ('U,, 'U) S Eg}
So S_g; C Sy means exactly that
(w,v) € B¢ = (f(u),f(v)) € En.

That is, f : Vg — Vg induces a graph homomorphism.
° S_gwe’ve captured the concept of a graph homomorphism using
Sa.
@ For general quantum graphs, and general TPCP maps, Stahlke
takes this as the definition of a homomorphism.

o Weaver calls these CP morphisms; tentatively suggests we should
start with a x-homomorphism if we want a “homomorphism”.
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Pullbacks

[Time?] [We “reverse the arrows” and use UCP maps not TPCP maps.]
Let 8 : M — N be a normal CP map between von Neumann algebras
M C B(Hy) and N C B(Hy). The Stinespring dilation takes a special
form:

@ there is a Hilbert space K and U : Hy — Hy ® K,
0 0(z)=U*(z®1)U forz e M C B(Hy);
@ there is a normal *-homomorphism p: N’ — Hj; ® K with
Uz’ =p(z’)U for z’ € N'.
Proposition (D.)
The pullback satisfies

<§ = weak” -closure{U*zU : z € SRB(K)},

independent of choice of U. In particular, this is already an
N'-bimodule.
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Duality

Let Bi, Bs be finite-dimensional with faithful traces ¢;. Given a UCP
map 0 : By — B there is a TPCP map 0: By — B satisfying/defined
by

¢1(a0(b)) = @2(8(a)b)  (a € By,beE By).

(“Accardi-Cecchini adjoint”.)
Proposition (D.)

Let @; be the “Markov Traces”, and giwen 0 form 0. Then a
pushforward of a quantum relation using 0 is the same as the
pullback using 0.

(We saw this for our maps on {*° and {!. The general case is more
complicated, but follows roughly the same idea.)
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Homomorphisms

Recall _t>hat 0: M — N is a homomorphism /| CP-morphism S; — Sa
when Sg - S]_.

Theorem (Stahlke)

Let©: C(Vy) — C(Vg) be a UCP map giving a homomorphism G
to H (that s, with Sg C Sy ). Then there 1s some map
f: Vg — Vg which ts a (classical) graph homomorphism.

@ In general O need not be directly related to f.

o However, often we just care about the ezristence of a
homomorphism.

o E.g. a k-colouring of G corresponds to some homomorphism

G — Ky, the complete graph. (This requires our graphs not to
have loops!)
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Automorphisms

An automorphism of a graph G = (V, E) is a bijection 6 : V — V
which satisfies that (4,7) € E < (0(2),0(3)) € E.
Set V ={1,---,n} for ease, so the adjacency matrix A is in M.

Lemma

Let Py € M,, be permutation matriz associated with a bijection 0.
Then 0 1s an automorphism of G if and only if PgA = APy.

Proof.
PgA = APy is equivalent to (07%(2),7) € E < (1,0(5)) € E, which in
turn is equivalent to (2,7) € E < (0(2),0(7)) € E. Ol

V.
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Non-commutative topology

I am under obligation to provide this table:

Spaces Algebras
Locally compact Hausdorff space | Commutative C*-algebra
Compact Unital
(Proper) continuous map x-Homomorphism
Cartesian Product Tensor product

Remember that this relationship is contravariant.
How might we deal with (Compact) groups?
As the product G x G — G and the inverse G — G and the identity

x — G are continuous maps, we could specify a commutative
C*-algebra A, and *-homomorphisms

A— ARA, A— A, A—C,

satisfying appropriate axioms.
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What are groups?

Definition
A group is a set G with an associative product G x G — G such that:

@ There is e € G with eg = ge = g for each g € G;
o For each g € G there are h,k € G with gh = kg = e.

So really the identity and inverse are “properties” of the semigroup G,
not “structure”.

It turns out that we get a (much) more interesting theory if we
similarly focus on the product, and think about an extra property.
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Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C*-algebra A together with a
unital x-homomorphism, the coproduct, A: A - A ® A, which is
coassociative, (A ® id)A = (id ®A)A, and such that:

{(a®1)A(b):a,be A}, {(1®a)A(b):a,be A}

both have dense linear span in A ® A.

Theorem

Let (A,A) be a compact quantum group with A commutative.
There 1s a compact group G with A = C(G) and
A:C(G)— C(G)® C(G)=C(G x G) gwen by

A(f)(s,t) = f(st) (f € C(G),s,t € G).
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Quantum group (co)actions
An (right) action of a group G on a space/set X is a map

XxG— X.

So we get a x-homomorphism

a: C(X) = C(X)® C(G),

o (iId®A)x = (a ®id)x corresponds to z - st = (z - s) - t;

o linfx(b)(1®a):aec C(G),be C(X)}isdensein C(X)® C(G)
corresponds to z - e = .

Definition (Podles)

A (right) coaction of a compact quantum group (A, A) on a C*-algebra
B is a unital *-homomorphism «: B — B ® A with these two
conditions.
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Coactions on £°
Fix a compact quantum group (A4, A).

The algebra {5 is spanned by projections (e;)? ;.
So a: €y — 5’ ® A is determined by (u;;) in A with

n
i) = Z € & Uj;.
j=1

« is a *-homomorphism <> each uj a projection and

Uji Ujke = O Ui

o is unital & ) ;uy; =1,

o satisfles the coaction equation & A(u;) = ) 4 ujp ® ug;

o satisfies the Podle$ density condition < ) , u; = 1.

General Theory = ) u; = 1.

So u = (uy) is a matrix of projections, each row and column sums
to 1. A quantum permutation matriz or magic unitary.
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Quantum symmetry group of the space of n points
For e%o = C({l) 2) e )n}),

n
x(e;) = Z € @ Uj;,
i1

with u = (u;;) a magic unitary.
Theorem (Wang)

Let S,' be the “universal” C*-algebra generated by a magic
unitary. Then S, is the “largest” compact quantum group which
acts on C" 1s a “non-degenerate” way.

We think of S, as the “quantum symmetry group” of {1,2,---,n}.

Matthew Daws Quantum Graphs May 2024 37 /46



(Co)actions on graphs
Recall that a permutation 0 gives an automorphism of G when
PogAg = AgPe.

Here Ag is the adjacency matrix of G, which we can think of as also a
linear map £5° — £2°.
So Aut(G) acts in a way which preserves Ag:

oy = 0 ® C(Aut(G));, odg=(Ag®id)x.

Definition (Banica)

The quantum automorphism group of G is the maximal compact
quantum group QAut(G) with a coaction satisfying

o) = 00 @ QAut(G); odg =(Ac ®id)x.

Equivalently, the underlying magic unitary U = (u;) has to commute
with the adjacency matrix Ag. This allows us to construct QAut(G)
as a quotient of S,.
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Examples

We say that a graph has quantum symmetry if Aut(G) # QAut(G).
@ By now, we have many examples.

@ For example, the Petersen graph has no quantum symmetry
[Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]

o [Roberson, Schmidt] have constructed G with Aut(G) # QAut(G)
and yet QAut(G) is finite.

o [Dobben de Bruyn, Roberson, Schmidt] have constructed G with
Aut(G) trivial and QAut(G) non-trivial.
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(Co)actions on operator bimodules

What is an “automorphism” of § C B(£2(V))?
o Start with a bijection 8 : V — V, hence giving Py € B({?(V)).
@ Then get an action on B({?(V)) as 0:z PgzPj (as Py = Pal).
@ When is 8 left invariant: Po8Pj = 87

Notice that

Poei Py = eg(:),0(5)

@ So if G is a graph, and 8 = 8¢ the canonical operator system;
o then PgSg Py = § exactly when (1,7) € E < (0(2),0(7)) € E;

@ that is, 0 is an automorphism of G.

How to phrase this in terms of coactions?
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Unitary implementations

Given a coaction o : {* (V) - {*°(V)® A of (A, A) on (*(V), we saw
before that o gives rise to a magic unitary u = (u;;); jev,

x(e) = Z e; @ uj (1€ V).
jev

Lemma
Let {*°(V) C B({?(V)). Then

a(z) =u(lz®@1)u* (z € l>®(V)).
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Coactions on operator bimodules

a(z) =ulz ®1)u* (z € (®(V) C BHZ(V))).
It hence make sense. ..

Definition

o is a coaction on § C B({?(V)) exactly when u(z ® 1)u* € 8 ® A for
each z € 8.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)

If a graph G 1s associated to the {*°(V )-operator bimodule S, then
a coaction of (A,A) on {*®(V) gives a coaction on G if and only if
it gives a coaction on S.
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Coactions on C*-algebras

A coaction of (A,A) on B is, as before,
x:B—-B®A;, (deA)a=(a®id)a,

and satisfying the Podles density condition.

(So simply replace £5° by an arbitrary B.)

Theorem (Wang)

There 1s no mazimal compact quantum group coacting on B.

If 1s a faithful state on B, there is a mazimal compact quantum
group coacting on B and preserving b, meaning:

(W @id)a(z) = P(z)1 for ¢ € B. Write QAut(B, ) for this.
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Coactions on quantum adjacency matrices

There is now a clear definition:
Definition (Brannan et al.)

Let A be a quantum adjacency matrix on (B,{). We say that (A, A)
coacts on Ag when «: B — B ® A is a coaction, which preserves 1,
and with (Ag ® id)ax = xAg.

o Here we regard Ag as a linear map on B.

@ That « preserves 1 allows us to define a unitary
U € B(L?(B)) ® A which implements «, as a(z) = U(z ® 1) U*.
Indeed, one way to prove Wang’s theorem is to start with such a

U and impose certain conditions on it (compare Compact
Quantum Matrix Groups).

@ Then, equivalently, we require that U and Ag ® 1 commute.
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Coactions on operator bimodules
A coaction o which preserves 1 gives a unitary U (which is a
corepresentation) and it is then easy to see that

ay : B(L?(B)) - B(L*(B))® A4; z+— U(z®@1)U*

is a coaction (which extends o).
Might this leave § C B(L?(B)) invariant if and only if U commutes
with Ag?
@ No, as the “trivial quantum graph” is § = B’, which should always
be invariant, but oy leaves B invariant, not B’.
o Instead, we can use the modular conjugation J and antipode to
form a “commutant” coaction «f;; or equivalently, look at ayy but

work with
8 ={JTJ: T €c8§).
Theorem (D.)
« leaves Ag invariant if and only if «y leaves 8’ invariant. J
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Further

@ For a “homomorphism” do we really want our UCP map to be a
x-homomorphism?

o It turns out some ideas from “quantum games” [Brannan et al.]
naturally separate out the conditions on a “CP-morphism”, and
these actually force a *-homomorphism.

@ Also related to trying to “ignore loops”.
Possible future things:

o What are the “correct axioms”? E.g. self-adjointness or “reality”?
Applications which might motivate this?

@ Is there some sort of infinite-dimensional theory?
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