Non-commutative graphs

Matthew Daws

Lancaster

Wrocław, May 2024

Graphs

A graph consists of a (finite) set of vertices V and a collection of edges $E \subseteq V \times V$.

$$
\begin{aligned}
& V=\{A, B, C\} \text { say, and } E= \\
& \{(A, B),(B, C),(C, B),(C, A)\} .
\end{aligned}
$$

So a graph $G=(V, E)$ is nothing but a relation on the set V.

- In general not reflexive (unless every vertex has a self-loop);
- Symmetric when G is undirected;
- Rarely transitive.

Channels

A channel sends an input message (element of a finite set A) to an output message (element of a finite set B) perhaps with noise so that there is a probability that $a \in A$ is mapped to various different $b \in B$.
$p(b \mid a)=$ probability that b is received given that a was sent
Define a (simple, undirected) graph structure on A by

$$
\left(a_{1}, a_{2}\right) \text { an edge when } p\left(b \mid a_{1}\right) p\left(b \mid a_{2}\right)>0 \text { for some } b
$$

This is the confusability graph of the channel.
If we want to communicate with zero error then we seek a maximal independent set in A : a maximal subset of A which cannot be confused.

Physics notation

I will follow physics notation, so inner products $(\cdot \mid \cdot)$ are linear on the right.

- Use bra-ket notation: $|\psi\rangle$ is a vector in a Hilbert space H, and $\langle\psi|$ is a member of the dual space, identified with the conjugate \bar{H}.
- Then $\langle\psi \mid \phi\rangle=(\psi \mid \phi)$ the inner-product...
- and $|\phi\rangle\langle\psi|$ is the rank-one operator $H \rightarrow H ; \alpha \mapsto(\psi \mid \alpha) \phi$.

Quantum Mechanics

Definition

A state is a unit vector $|\psi\rangle$ in a (finite dim) Hilbert space H.
Multiplying a state by a unit modulus complex number doesn't change the physics. One way to deal with this is to identify a state with the rank-one projection $|\psi\rangle\langle\psi|$.

Definition

A density is a positive, trace one operator $\rho \in \mathcal{B}(H)$.

- So a rank-one density is a state; we call a general density a mixed state.
- Mathematically, using trace-duality, a density is nothing but a (normal) state on the C^{*}-algebra $\mathcal{B}(H)$.

Quantum channels

Definition

A (quantum) channel is a trace-preserving, completely positive (CPTP) map $\mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right)$.

- positive and trace-preserving so it maps densities to densities;
- completely positive so you can tensor with another system and still have positivity.

Theorem (Stinespring)

A linear map $\theta: A \rightarrow \mathcal{B}(H)$, from a C^{*}-algebra A, is completely positive if and only if it admits a dilation of the form

$$
\theta(a)=V^{*} \pi(a) V \quad(a \in A)
$$

for $\pi: A \rightarrow \mathcal{B}(K) a *$-homomorphism, and $V: H \rightarrow K$ a bounded linear map.

Stinespring and Kraus

Any CP map $\mathcal{E}: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right)$ has the form

$$
\mathcal{E}(x)=V^{*} \pi(x) V \quad\left(x \in \mathcal{B}\left(H_{A}\right)\right)
$$

where $V: H_{B} \rightarrow K$, and $\pi: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}(K)$ is a $*$-representation.

- Any such π is of the form $\pi(x)=x \otimes 1$ where $K \cong H_{A} \otimes K^{\prime}$.
- Take an o.n. basis $\left(e_{i}\right)$ for K^{\prime} so $V(\xi)=\sum_{i} K_{i}^{*}(\xi) \otimes e_{i}$ for some operators $K_{i}: H_{A} \rightarrow H_{B}$.
We arrive at the Kraus form:

$$
\mathcal{E}(x)=\sum_{i} K_{i} x K_{i}^{*} \quad\left(x \in \mathcal{B}\left(H_{A}\right)\right)
$$

Trace-preserving if and only if $\sum_{i} K_{i}^{*} K_{i}=1$.

Quantum zero-error

We turn $\mathcal{B}(H)$ into a Hilbert space using the trace: $(T \mid S)=\operatorname{tr}\left(T^{*} S\right)$. A sensible notion of when densities ρ, σ are distinguishable is when they are orthogonal.
Let $\mathcal{E}(x)=\sum_{i} K_{i} x K_{i}^{*}$ be a quantum channel. We wish to consider when $\mathcal{E}(\rho) \perp \mathcal{E}(\sigma)$. As \mathcal{E} is positive, this is equivalent to

$$
\mathcal{E}(|\psi\rangle\langle\psi|) \perp \mathcal{E}(|\phi\rangle\langle\phi|) \quad(\psi \in \text { Image } \rho, \phi \in \text { Image } \sigma) .
$$

Equivalently

$$
\begin{aligned}
0=\operatorname{tr}(\mathcal{E}(|\psi\rangle\langle\psi|) \mathcal{E}(|\phi\rangle\langle\phi|)) & =\sum_{i, j} \operatorname{tr}\left(K_{i}|\psi\rangle\langle\psi| K_{i}^{*} K_{j}|\phi\rangle\langle\phi| K_{j}^{*}\right) \\
& \left.=\sum_{i, j}\left|\langle\psi| K_{i}^{*} K_{j}\right| \phi\right\rangle\left.\right|^{2}
\end{aligned}
$$

which is equivalent to $\langle\psi| K_{i}^{*} K_{j}|\phi\rangle=0$ for each i, j.

To operator systems

So ψ, ϕ are distinguishable after applying \mathcal{E} when

$$
\langle\psi| T|\phi\rangle=0 \quad \text { for each } \quad T \in \operatorname{lin}\left\{K_{i}^{*} K_{j}\right\} .
$$

Set $\mathcal{S}=\operatorname{lin}\left\{K_{i}^{*} K_{j}\right\}$ which has the properties:

- \mathcal{S} is a linear subspace;
- $T \in \mathcal{S}$ if and only if $T^{*} \in \mathcal{S}$;
- $1 \in \mathcal{S}$ (as $\sum_{i} K_{i}^{*} K_{i}=1$ as \mathcal{E} is CPTP).

That is, \mathcal{S} is an operator system, which depends only on \mathcal{E} and not the choice of $\left(K_{i}\right)$.

Theorem (Duan)

For any operator system $\mathcal{S} \subseteq \mathcal{B}\left(H_{A}\right)$ there is some quantum channel $\mathcal{E}: \mathcal{B}\left(H_{A}\right) \rightarrow \mathcal{B}\left(H_{B}\right)$ giving rise to \mathcal{S}.

In the classical case

Given a classical channel from A to B with probabilities $p(b \mid a)$, we encode this as follows:

- Let $H_{A}=\ell^{2}(A)$ with o.n. basis $\{|a\rangle: a \in A\}$; and the same for B.
- Define Kraus operators

$$
K_{a b}=p(b \mid a)^{1 / 2}|b\rangle\langle a|: H_{A} \rightarrow H_{B}
$$

Then $\mathcal{E}: \rho \mapsto \sum_{a, b} K_{a b} \rho K_{a b}^{*}$ sends a pure state $|c\rangle\langle c|$ to

$$
\sum_{a b} K_{a b}|c\rangle\langle c| K_{a b}^{*}=\sum_{a b} p(b \mid a)|b\rangle\langle a \mid c\rangle\langle c \mid a\rangle\langle b|=\sum_{b} p(b \mid c)|b\rangle\langle b| .
$$

That is, the combination of pure states which can be received, given that message c was sent.

The associated operator system

The Kraus operators are

$$
K_{a b}=p(b \mid a)^{1 / 2}|b\rangle\langle a|: H_{A} \rightarrow H_{B} .
$$

Hence

$$
\begin{aligned}
\mathcal{S} & =\operatorname{lin}\left\{K_{a b}^{*} K_{c d}\right\}=\operatorname{lin}\left\{p(b \mid a)^{1 / 2} p(d \mid c)^{1 / 2}|a\rangle\langle b \mid d\rangle\langle c|\right\} \\
& =\operatorname{lin}\left\{p(b \mid a)^{1 / 2} p(b \mid c)^{1 / 2}|a\rangle\langle c|\right\} \\
& =\operatorname{lin}\{|a\rangle\langle c|: a \sim c\},
\end{aligned}
$$

where $a \sim c$ exactly when $p(b \mid a) p(b \mid c)>0$ for some b.
Thus \mathcal{S} is directly linked to the confusability graph of the channel: it is the span of the matrix units $e_{a c}$ for each edge (a, c) in the graph. (Notice here our "graphs" are finite, simple, but we allow (single, unoriented) loops at vertices.)

Quantum relations

Simultaneously, and motivated more by "noncommutative geometry":

Definition (Weaver)

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. A quantum relation on M is a weak*-closed subspace $S \subseteq \mathcal{B}(H)$ with $M^{\prime} S M^{\prime} \subseteq S$. We say that the relation is:
(1) reflexive if $M^{\prime} \subseteq S$;
(2) symmetric if $S^{*}=S$ where $S^{*}=\left\{x^{*}: x \in S\right\}$;
(3) transitive if $S^{2} \subseteq S$ where $S^{2}=\varlimsup^{\operatorname{lin}^{*}}\{x y: x, y \in S\}$.

When $M=\ell^{\infty}(X) \subseteq \mathcal{B}\left(\ell^{2}(X)\right)$ there is a bijection between the usual meaning of "relation" on X and quantum relations on M, given by

$$
x \sim y \text { when } e_{x, y} \in S, \quad S=\overline{\operatorname{lin}}^{w^{*}}\left\{e_{x, y}: x \sim y\right\} .
$$

Operator bimodules

The condition that $M^{\prime} S M^{\prime} \subseteq S$ means that S is an operator bimodule over M^{\prime}.
(Not to be confused with Hilbert C^{*}-modules!)

- We assume $M \subseteq \mathcal{B}(H)$ and $S \subseteq \mathcal{B}(H)$.
- If $M \subseteq \mathcal{B}(K)$ as well, we of course want a $T \subseteq \mathcal{B}(K)$ corresponding to S.
- This can be found by using the structure theory for normal *-homomorphisms $\theta: M \rightarrow \mathcal{B}(K)$. Essentially θ is a dilation followed by a cut-down in the commutant.
- That S is a bimodule over M^{\prime} is needed to get this correspondence with T.
So this notion is really independent of the choice of embedding $M \subseteq \mathcal{B}(H)$. [Weaver] gives an intrinsic notion just using M.

Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and as:

- undirected graphs correspond to symmetric relations;
- a reflexive relation corresponds to having a "loop" at every vertex.

Definition (Weaver)

A quantum graph on a von Neumann algebra $M \subseteq \mathcal{B}(H)$ is a reflexive, symmetric quantum relation. That is, a unital, self-adjoint, weak*-closed subspace $S \subseteq \mathcal{B}(H)$, which is an M^{\prime}-bimodule $\left(M^{\prime} S M^{\prime} \subseteq S\right)$.

If $M=\mathcal{B}(H)$ with H finite-dimensional, then as $M^{\prime}=\mathbb{C}$, a quantum graph is just an operator system: that is, exactly what we had before! [Duan, Severini, Winter; Stahlke]

Adjacency matrices

Given a graph $G=(V, E)$ consider the $\{0,1\}$-valued matrix A with

$$
A_{i, j}= \begin{cases}1 & :(i, j) \in E \\ 0 & : \text { otherwise }\end{cases}
$$

the adjacency matrix of G.

- A is idempotent for the Schur product;
- G is undirected if and only if A is self-adjoint;
- A has 1 s down the diagonal when G has a loop at every vertex. We can think of A as an operator on $\ell^{2}(V)$. This is the GNS space for the C^{*}-algebra $\ell^{\infty}(V)$ for the state induced by the uniform measure.

General C^{*}-algebras

Let B be a finite-dimensional C^{*}-algebra, and let φ be a faithful state on B, with GNS space $L^{2}(B)$. Thus B bijects with $L^{2}(B)$ as a vector space, and so we get:

- The multiplication on B induces a map

$$
m: L^{2}(B) \otimes L^{2}(B) \rightarrow L^{2}(B)
$$

- the Hilbert space structure now allows us to define

$$
m^{*}: L^{2}(B) \rightarrow L^{2}(B) \otimes L^{2}(B)
$$

- The unit in B induces a map $\eta: \mathbb{C} \rightarrow L^{2}(B)$;
- similarly we obtain $\eta^{*}: L^{2}(B) \rightarrow \mathbb{C}$, which is just φ.

We get an analogue of the Schur product:

$$
x \bullet y=m(x \otimes y) m^{*} \quad\left(x, y \in \mathcal{B}\left(L^{2}(B)\right)\right)
$$

Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint $A \in \mathcal{B}\left(L^{2}(B)\right)$ with:

- $m(A \otimes A) m^{*}=A$ (so Schur product idempotent);
- $\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)=A$;
- $m(A \otimes 1) m^{*}=$ id (a "loop at every vertex");

The middle axiom is a little mysterious: it roughly corresponds to "undirected".

Subspaces to projections

Fix a finite-dimensional C^{*}-algebra (von Neumann algebra) M. A "quantum graph" is either:

- A subspace of $\mathcal{B}(H)$ (where $M \subseteq \mathcal{B}(H)$) with some properties; or
- An operator on $L^{2}(M)$ with some properties.

How do we move between these?
$S \subseteq \mathcal{B}(H)$ is a bimodule over M^{\prime}. As H is finite-dimensional, $\mathcal{B}(H)$ is a Hilbert space for

$$
(x \mid y)=\operatorname{tr}\left(x^{*} y\right)
$$

Then $M \otimes M^{\mathrm{op}}$ is represented on $\mathcal{B}(H)$ via

$$
\pi: M \otimes M^{\circ p} \rightarrow \mathcal{B}(\mathcal{B}(H)) ; \quad \pi(x \otimes y): T \mapsto x T y
$$

- The commutant of $\pi\left(M \otimes M^{\mathrm{op}}\right)$ is $M^{\prime} \otimes\left(M^{\prime}\right)^{\mathrm{op}}$.
- An M^{\prime}-bimodule of $\mathcal{B}(H)$ corresponds to an $M^{\prime} \otimes\left(M^{\prime}\right)^{\text {op }}$-invariant subspace of the Hilbert space $\mathcal{B}(H)$;
- which corresponds to a projection in $M \otimes M^{\circ}$.

Operators to algebras

So how can we relate:

- Operators $A \in \mathcal{B}\left(L^{2}(M)\right)$;
- Projections in $M \otimes M^{\circ}$?

[Musto, Reutter, Verdon]

Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

$$
\Lambda: M \rightarrow L^{2}(M) ; \quad(\Lambda(x) \mid \Lambda(y))=\psi\left(x^{*} y\right)
$$

As $L^{2}(M)$ is finite-dimensional, every operator on $L^{2}(M)$ is a linear combination of rank-one operators. So we may define a bijection

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad|\Lambda(b)\rangle\langle\Lambda(a)| \mapsto b \otimes a^{*}
$$

and extend by linearity!

Operators to algebras 3

$$
\Psi: \mathcal{B}\left(L^{2}(M)\right) \rightarrow M \otimes M^{\mathrm{op}} ; \quad|\Lambda(b)\rangle\langle\Lambda(a)| \mapsto b \otimes a^{*}
$$

- Ψ is a homomorphism for the "Schur product"

$$
A_{1} \bullet A_{2}=m\left(A_{1} \otimes A_{2}\right) m^{*}
$$

- $A \mapsto\left(1 \otimes \eta^{*} m\right)(1 \otimes A \otimes 1)\left(m^{*} \eta \otimes 1\right)$ corresponds to the anti-homomorphism $\sigma: a \otimes b \mapsto b \otimes a$ on $M \otimes M^{\mathrm{op}}$;
- $A \mapsto A^{*}$ corresponds to $e \mapsto \sigma(e)^{*}$.

Conclude: A quantum adjacency matrix corresponds to an idempotent $e \in M \otimes M^{\circ p}$ with $\sigma(e)=e$ and $\sigma(e)^{*}=e$.
That is, a projection e with $\sigma(e)=e$.
But: There is no clean one-to-one correspondence between the axioms.

KMS States

Any faithful state ψ is KMS: there is an automorphism σ^{\prime} of M with

$$
\psi(a b)=\psi\left(b \sigma^{\prime}(a)\right) \quad(a, b \in M)
$$

Indeed, there is $Q \in M$ positive and invertible with

$$
\psi(a)=\operatorname{tr}(Q a) \quad \sigma^{\prime}(a)=Q a Q^{-1}
$$

Theorem (D.)

Twisting our bijection Ψ using σ^{\prime} allows us to establish a bijection between:

- Quantum adjacency operators $A \in \mathcal{B}\left(L^{2}(M)\right)$;
- projections $e \in M \otimes M^{\mathrm{OP}}$ with $e=\sigma(e)$ and $\left(\sigma^{\prime} \otimes \sigma^{\prime}\right)(e)=e$;
- self-adjoint M^{\prime}-bimodules $S \subseteq \mathcal{B}(H)$ with $Q S Q^{-1}=S$.

So this is more restrictive than the tracial case.

Invariance under the modular automorphism

Why do we end up with $\left(\sigma^{\prime} \otimes \sigma^{\prime}\right)(e)=e$?

- The "middle axiom" is a bit mysterious: we already assume that A is self-adjoint, and shouldn't this alone correspond to the graph being undirected? (Both conditions together is a bit strong.)
- [Matsuda] looked at a different condition, that of A being "real" which means that $A: L^{2}(B) \rightarrow L^{2}(B)$, thought of as a map $B \rightarrow B$, is $*$-preserving.
- [D.] showed that replacing "self-adjoint and axiom (2)" with "real" gives a simple bijection with projections.
- [Wasilewski] has recently shown that looking at "KMS inner-products" not "GNS inner-products" is a nice framework to view this in.
(However, we are stuck with the existing literature.)

Towards homomorphisms

Let B_{1}, B_{2} be finite-dimensional C^{*}-algebras (maybe just $B_{i}=\mathcal{B}\left(H_{i}\right)$), and let $\theta: B_{1} \rightarrow B_{2}$ be a CPTP map with Kraus form

$$
\theta(x)=\sum_{i=1}^{n} b_{i} x b_{i}^{*}
$$

For $i=1,2$ let $B_{i} \subseteq \mathcal{B}\left(H_{i}\right)$ and let $S_{i} \subseteq \mathcal{B}\left(H_{i}\right)$ be a quantum graph/relation over B_{i}.

Definition (Weaver)

The pushforward of S_{1} is

$$
\overrightarrow{S_{1}}=B_{2}^{\prime} \text {-bimodule }\left\{b_{i} x b_{j}^{*}: x \in S_{1}, 1 \leqslant i, j \leqslant n\right\} .
$$

The pullback of S_{2} is

$$
\overleftarrow{S_{2}}=B_{1}^{\prime} \text {-bimodule }\left\{b_{i}^{*} y b_{j}: y \in S_{2}, 1 \leqslant i, j \leqslant n\right\}
$$

Motivation

Let $G=\left(V_{G}, E_{G}\right), H=\left(V_{H}, E_{H}\right)$ be graphs.

- For $f: V_{G} \rightarrow V_{H}$ a map, define

$$
\begin{gathered}
\theta: C\left(V_{H}\right) \rightarrow C\left(V_{G}\right), \\
\theta(a)(u)=a(f(u)) \quad\left(u \in V_{G}, a \in C\left(V_{H}\right)\right) .
\end{gathered}
$$

- So θ is a $*$-homomorphism, in particular, a UCP map. We find a Kraus form for θ. Given $x \in V_{H}$ there might be many (or none!) $u \in V_{G}$ with $f(u)=x$; enumerate the u in some way. Define $b_{i}: \ell^{2}\left(V_{G}\right) \rightarrow \ell^{2}\left(V_{H}\right)$ by

$$
b_{i}\left(\delta_{u}\right)=\delta_{x} \quad \text { if } u \text { is the } i \text { th vertex with } f(u)=x
$$

Then indeed

$$
\sum_{i} b_{i}^{*} a b_{i}\left(\delta_{u}\right)=a(f(u))=\theta(a)\left(\delta_{u}\right) \quad\left(a \in C\left(V_{H}\right), u \in V_{G}\right)
$$

CPTP maps

These $\left(b_{i}\right)$ satisfy the pleasing fact that

$$
\sum_{i} b_{i} e_{u} b_{i}^{*}=e_{f(u)} \quad\left(u \in V_{G}\right)
$$

where $e_{u} \in \ell^{\infty}\left(V_{G}\right)$ is the minimal projection. So we also obtain a TPCP map $\hat{\theta}: C\left(V_{G}\right) \rightarrow C\left(V_{H}\right)$.

The operator system associated to G is

$$
S_{G}=\operatorname{lin}\left\{e_{u, v}:(u, v) \in E_{G}\right\} \subseteq \mathbb{M}_{V_{G}}
$$

Then, using $\hat{\theta}$,

$$
\overrightarrow{S_{G}}=\operatorname{lin}\left\{e_{f(u), f(v)}:(u, v) \in E_{G}\right\}
$$

Similarly, given S_{H}, we find that

$$
\overleftarrow{S_{H}}=\operatorname{lin}\left\{e_{u, v}:(f(u), f(v)) \in E_{H}\right\}
$$

Homomorphisms

$$
\overrightarrow{S_{G}}=\operatorname{lin}\left\{e_{f(u), f(v)}:(u, v) \in E_{G}\right\}
$$

So $\overrightarrow{S_{G}} \subseteq S_{H}$ means exactly that

$$
(u, v) \in E_{G} \quad \Longrightarrow \quad(f(u), f(v)) \in E_{H}
$$

That is, $f: V_{G} \rightarrow V_{H}$ induces a graph homomorphism.

- So we've captured the concept of a graph homomorphism using $\overrightarrow{S_{G}}$.
- For general quantum graphs, and general TPCP maps, Stahlke takes this as the definition of a homomorphism.
- Weaver calls these CP morphisms; tentatively suggests we should start with a *-homomorphism if we want a "homomorphism".

Pullbacks

[Time?] [We "reverse the arrows" and use UCP maps not TPCP maps.] Let $\theta: M \rightarrow N$ be a normal CP map between von Neumann algebras $M \subseteq \mathcal{B}\left(H_{M}\right)$ and $N \subseteq \mathcal{B}\left(H_{N}\right)$. The Stinespring dilation takes a special form:

- there is a Hilbert space K and $U: H_{N} \rightarrow H_{M} \otimes K$;
- $\theta(x)=U^{*}(x \otimes 1) U$ for $x \in M \subseteq \mathcal{B}\left(H_{M}\right)$;
- there is a normal $*$-homomorphism $\rho: N^{\prime} \rightarrow H_{M} \otimes K$ with $U x^{\prime}=\rho\left(x^{\prime}\right) U$ for $x^{\prime} \in N^{\prime}$.

Proposition (D.)

The pullback satisfies

$$
\overleftarrow{S}=\text { weak }^{*} \text {-closure }\left\{U^{*} x U: x \in S \bar{\otimes} \mathcal{B}(K)\right\}
$$

independent of choice of U. In particular, this is already an N^{\prime}-bimodule.

Duality

Let B_{1}, B_{2} be finite-dimensional with faithful traces φ_{i}. Given a UCP $\operatorname{map} \theta: B_{2} \rightarrow B_{1}$ there is a TPCP map $\hat{\theta}: B_{1} \rightarrow B_{2}$ satisfying/defined by

$$
\varphi_{1}(a \theta(b))=\varphi_{2}(\hat{\theta}(a) b) \quad\left(a \in B_{1}, b \in B_{2}\right)
$$

("Accardi-Cecchini adjoint".)

Proposition (D.)

Let φ_{i} be the "Markov Traces", and given θ form $\hat{\theta}$. Then a pushforward of a quantum relation using θ is the same as the pullback using $\hat{\theta}$.
(We saw this for our maps on ℓ^{∞} and ℓ^{1}. The general case is more complicated, but follows roughly the same idea.)

Homomorphisms

Recall that $\theta: M \rightarrow N$ is a homomorphism / CP-morphism $S_{1} \rightarrow S_{2}$ when $\overrightarrow{S_{2}} \subseteq S_{1}$.

Theorem (Stahlke)

Let $\theta: C\left(V_{H}\right) \rightarrow C\left(V_{G}\right)$ be a UCP map giving a homomorphism G to H (that is, with $\overrightarrow{S_{G}} \subseteq S_{H}$). Then there is some map
$f: V_{G} \rightarrow V_{H}$ which is a (classical) graph homomorphism.

- In general θ need not be directly related to f.
- However, often we just care about the existence of a homomorphism.
- E.g. a k-colouring of G corresponds to some homomorphism $G \rightarrow K_{k}$, the complete graph. (This requires our graphs not to have loops!)

Automorphisms

An automorphism of a graph $G=(V, E)$ is a bijection $\theta: V \rightarrow V$ which satisfies that $(i, j) \in E \Leftrightarrow(\theta(i), \theta(j)) \in E$.
Set $V=\{1, \cdots, n\}$ for ease, so the adjacency matrix A is in \mathbb{M}_{n}.

Lemma

Let $P_{\theta} \in \mathbb{M}_{n}$ be permutation matrix associated with a bijection θ. Then θ is an automorphism of G if and only if $P_{\theta} A=A P_{\theta}$.

Proof.

$P_{\theta} A=A P_{\theta}$ is equivalent to $\left(\theta^{-1}(i), j\right) \in E \Leftrightarrow(i, \theta(j)) \in E$, which in turn is equivalent to $(i, j) \in E \Leftrightarrow(\theta(i), \theta(j)) \in E$.

Non-commutative topology

I am under obligation to provide this table:

Spaces	Algebras
Locally compact Hausdorff space	Commutative C*-algebra
Compact	Unital
(Proper) continuous map	*-Homomorphism
Cartesian Product	Tensor product

Remember that this relationship is contravariant.
How might we deal with (Compact) groups?
As the product $G \times G \rightarrow G$ and the inverse $G \rightarrow G$ and the identity $* \rightarrow G$ are continuous maps, we could specify a commutative C^{*}-algebra A, and $*$-homomorphisms

$$
A \rightarrow A \otimes A, \quad A \rightarrow A, \quad A \rightarrow \mathbb{C}
$$

satisfying appropriate axioms.

What are groups?

Definition

A group is a set G with an associative product $G \times G \rightarrow G$ such that:

- There is $e \in G$ with $e g=g e=g$ for each $g \in G$;
- For each $g \in G$ there are $h, k \in G$ with $g h=k g=e$.

So really the identity and inverse are "properties" of the semigroup G, not "structure".
It turns out that we get a (much) more interesting theory if we similarly focus on the product, and think about an extra property.

Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^{*}-algebra A together with a unital $*$-homomorphism, the coproduct, $\Delta: A \rightarrow A \otimes A$, which is coassociative, $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$, and such that:

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

both have dense linear span in $A \otimes A$.

Theorem

Let (A, Δ) be a compact quantum group with A commutative. There is a compact group G with $A=C(G)$ and
$\Delta: C(G) \rightarrow C(G) \otimes C(G)=C(G \times G)$ given by

$$
\Delta(f)(s, t)=f(s t) \quad(f \in C(G), s, t \in G)
$$

Quantum group (co)actions

An (right) action of a group G on a space/set X is a map

$$
X \times G \rightarrow X
$$

So we get a $*$-homomorphism

$$
\alpha: C(X) \rightarrow C(X) \otimes C(G)
$$

- (id $\otimes \Delta) \alpha=(\alpha \otimes \mathrm{id}) \alpha$ corresponds to $x \cdot s t=(x \cdot s) \cdot t$;
- $\operatorname{lin}\{\alpha(b)(1 \otimes a): a \in C(G), b \in C(X)\}$ is dense in $C(X) \otimes C(G)$ corresponds to $x \cdot e=x$.

Definition (Podleś)

A (right) coaction of a compact quantum group (A, Δ) on a C^{*}-algebra B is a unital $*$-homomorphism $\alpha: B \rightarrow B \otimes A$ with these two conditions.

Coactions on ℓ_{n}^{∞}

Fix a compact quantum group (A, Δ).

- The algebra ℓ_{n}^{∞} is spanned by projections $\left(e_{i}\right)_{i=1}^{n}$.
- So $\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes A$ is determined by $\left(u_{i j}\right)$ in A with

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

- α is a $*$-homomorphism \Leftrightarrow each $u_{j i}$ a projection and $u_{j i} u_{j k}=\delta_{i k} u_{j i}$;
- α is unital $\Leftrightarrow \sum_{i} u_{j i}=1$;
- α satisfies the coaction equation $\Leftrightarrow \Delta\left(u_{j i}\right)=\sum_{k} u_{j k} \otimes u_{k i}$;
- α satisfies the Podleś density condition $\Leftrightarrow \sum_{i} u_{j i}=1$.
- General Theory $\Longrightarrow \sum_{j} u_{j i}=1$.
- So $u=\left(u_{i j}\right)$ is a matrix of projections, each row and column sums to 1. A quantum permutation matrix or magic unitary.

Quantum symmetry group of the space of n points

For $\ell_{n}^{\infty}=C(\{1,2, \cdots, n\})$,

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

with $u=\left(u_{i j}\right)$ a magic unitary.

Theorem (Wang)

Let S_{n}^{+}be the "universal" C^{*}-algebra generated by a magic unitary. Then S_{n}^{+}is the "largest" compact quantum group which acts on \mathbb{C}^{n} is a "non-degenerate" way.

We think of S_{n}^{+}as the "quantum symmetry group" of $\{1,2, \cdots, n\}$.

(Co)actions on graphs

Recall that a permutation θ gives an automorphism of G when

$$
P_{\theta} A_{G}=A_{G} P_{\theta}
$$

Here A_{G} is the adjacency matrix of G, which we can think of as also a linear map $\ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty}$.
So Aut (G) acts in a way which preserves A_{G} :

$$
\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes C(\operatorname{Aut}(G)) ; \quad \alpha A_{G}=\left(A_{G} \otimes \mathrm{id}\right) \alpha
$$

Definition (Banica)

The quantum automorphism group of G is the maximal compact quantum group $\operatorname{QAut}(G)$ with a coaction satisfying

$$
\alpha: \ell_{n}^{\infty} \rightarrow \ell_{n}^{\infty} \otimes \operatorname{QAut}(G) ; \quad \alpha A_{G}=\left(A_{G} \otimes \mathrm{id}\right) \alpha
$$

Equivalently, the underlying magic unitary $U=\left(u_{i j}\right)$ has to commute with the adjacency matrix A_{G}. This allows us to construct QAut (G) as a quotient of S_{n}^{+}.

Examples

We say that a graph has quantum symmetry if $\operatorname{Aut}(G) \neq \operatorname{QAut}(G)$.

- By now, we have many examples.
- For example, the Petersen graph has no quantum symmetry [Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]
- [Roberson, Schmidt] have constructed G with $\operatorname{Aut}(G) \neq \operatorname{QAut}(G)$ and yet QAut (G) is finite.
- [Dobben de Bruyn, Roberson, Schmidt] have constructed G with Aut (G) trivial and QAut (G) non-trivial.

(Co)actions on operator bimodules

What is an "automorphism" of $\mathcal{S} \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$?

- Start with a bijection $\theta: V \rightarrow V$, hence giving $P_{\theta} \in \mathcal{B}\left(\ell^{2}(V)\right)$.
- Then get an action on $\mathcal{B}\left(\ell^{2}(V)\right)$ as $\hat{\theta}: x \mapsto P_{\theta} x P_{\theta}^{*}\left(\right.$ as $\left.P_{\theta}^{*}=P_{\theta}^{-1}\right)$.
- When is \mathcal{S} left invariant: $P_{\theta} \mathcal{S} P_{\theta}^{*}=\mathcal{S}$?

Notice that

$$
P_{\theta} e_{i j} P_{\theta}^{*}=e_{\theta(i), \theta(j)}
$$

- So if G is a graph, and $\mathcal{S}=\mathcal{S}_{G}$ the canonical operator system;
- then $P_{\theta} \mathcal{S}_{G} P_{\theta}^{*}=\mathcal{S}$ exactly when $(i, j) \in E \Leftrightarrow(\theta(i), \theta(j)) \in E$;
- that is, θ is an automorphism of G.

How to phrase this in terms of coactions?

Unitary implementations

Given a coaction $\alpha: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V) \otimes A$ of (A, Δ) on $\ell^{\infty}(V)$, we saw before that α gives rise to a magic unitary $u=\left(u_{i j}\right)_{i, j \in V}$,

$$
\alpha\left(e_{i}\right)=\sum_{j \in V} e_{j} \otimes u_{j i} \quad(i \in V)
$$

Lemma

Let $\ell^{\infty}(V) \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$. Then

$$
\alpha(x)=u(x \otimes 1) u^{*} \quad\left(x \in \ell^{\infty}(V)\right) .
$$

Coactions on operator bimodules

$$
\alpha(x)=u(x \otimes 1) u^{*} \quad\left(x \in \ell^{\infty}(V) \subseteq \mathcal{B}\left(\ell^{2}(V)\right)\right)
$$

It hence make sense...

Definition

α is a coaction on $\mathcal{S} \subseteq \mathcal{B}\left(\ell^{2}(V)\right)$ exactly when $u(x \otimes 1) u^{*} \in \mathcal{S} \otimes A$ for each $x \in \mathcal{S}$.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)

If a graph G is associated to the $\ell^{\infty}(V)$-operator bimodule \mathcal{S}, then a coaction of (A, Δ) on $\ell^{\infty}(V)$ gives a coaction on G if and only if it gives a coaction on \mathcal{S}.

Coactions on C^{*}-algebras

A coaction of (A, Δ) on B is, as before,

$$
\alpha: B \rightarrow B \otimes A ; \quad(\mathrm{id} \otimes \Delta) \alpha=(\alpha \otimes \mathrm{id}) \alpha
$$

and satisfying the Podles density condition.
(So simply replace ℓ_{n}^{∞} by an arbitrary B.)

Theorem (Wang)

There is no maximal compact quantum group coacting on B.
If ψ is a faithful state on B, there is a maximal compact quantum group coacting on B and preserving ψ, meaning:
$(\psi \otimes \mathrm{id}) \alpha(x)=\psi(x) 1$ for $x \in B$. Write QAut (B, ψ) for this.

Coactions on quantum adjacency matrices

There is now a clear definition:

Definition (Brannan et al.)

Let A_{G} be a quantum adjacency matrix on (B, ψ). We say that (A, Δ) coacts on A_{G} when $\alpha: B \rightarrow B \otimes A$ is a coaction, which preserves ψ, and with $\left(A_{G} \otimes \mathrm{id}\right) \alpha=\alpha A_{G}$.

- Here we regard A_{G} as a linear map on B.
- That α preserves ψ allows us to define a unitary $U \in \mathcal{B}\left(L^{2}(B)\right) \otimes A$ which implements α, as $\alpha(x)=U(x \otimes 1) U^{*}$. Indeed, one way to prove Wang's theorem is to start with such a U and impose certain conditions on it (compare Compact Quantum Matrix Groups).
- Then, equivalently, we require that U and $A_{G} \otimes 1$ commute.

Coactions on operator bimodules

A coaction α which preserves ψ gives a unitary U (which is a corepresentation) and it is then easy to see that

$$
\alpha_{U}: \mathcal{B}\left(L^{2}(B)\right) \rightarrow \mathcal{B}\left(L^{2}(B)\right) \otimes A ; \quad x \mapsto U(x \otimes 1) U^{*}
$$

is a coaction (which extends α).
Might this leave $\mathcal{S} \subseteq \mathcal{B}\left(L^{2}(B)\right)$ invariant if and only if U commutes with A_{G} ?

- No, as the "trivial quantum graph" is $\mathcal{S}=B^{\prime}$, which should always be invariant, but α_{U} leaves B invariant, not B^{\prime}.
- Instead, we can use the modular conjugation J and antipode to form a "commutant" coaction α_{U}^{\prime}; or equivalently, look at α_{U} but work with

$$
\mathcal{S}^{\prime}:=\{J T J: T \in \mathcal{S}\}
$$

Theorem (D.)

α leaves A_{G} invariant if and only if α_{U} leaves \mathcal{S}^{\prime} invariant.

Further

- For a "homomorphism" do we really want our UCP map to be a *-homomorphism?
- It turns out some ideas from "quantum games" [Brannan et al.] naturally separate out the conditions on a "CP-morphism", and these actually force a $*$-homomorphism.
- Also related to trying to "ignore loops".

Possible future things:

- What are the "correct axioms"? E.g. self-adjointness or "reality"? Applications which might motivate this?
- Is there some sort of infinite-dimensional theory?

