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Graphs

A graph consists of a (finite) set of vertices V and a collection of edges
E ⊆ V ×V .

V = {A,B ,C } say, and E =

{(A,B), (B ,C ), (C ,B), (C ,A)}.

So a graph G = (V ,E) is nothing but a relation on the set V .

In general not reflexive (unless every vertex has a self-loop);

Symmetric when G is undirected;

Rarely transitive.
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Channels

A channel sends an input message (element of a finite set A) to an
output message (element of a finite set B) perhaps with noise so that
there is a probability that a ∈ A is mapped to various different b ∈ B .

p(b|a) = probability that b is received given that a was sent

Define a (simple, undirected) graph structure on A by

(a1, a2) an edge when p(b|a1)p(b|a2) > 0 for some b.

This is the confusability graph of the channel.
If we want to communicate with zero error then we seek a maximal
independent set in A: a maximal subset of A which cannot be
confused.
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Physics notation

I will follow physics notation, so inner products (·|·) are linear on the
right.

Use bra-ket notation: |ψ⟩ is a vector in a Hilbert space H , and ⟨ψ|
is a member of the dual space, identified with the conjugate H .

Then ⟨ψ|ϕ⟩ = (ψ|ϕ) the inner-product. . .

and |ϕ⟩⟨ψ| is the rank-one operator H → H ; α 7→ (ψ|α)ϕ.
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Quantum Mechanics

Definition
A state is a unit vector |ψ⟩ in a (finite dim) Hilbert space H .

Multiplying a state by a unit modulus complex number doesn’t change
the physics. One way to deal with this is to identify a state with the
rank-one projection |ψ⟩⟨ψ|.

Definition
A density is a positive, trace one operator ρ ∈ B(H ).

So a rank-one density is a state; we call a general density a mixed
state.

Mathematically, using trace-duality, a density is nothing but a
(normal) state on the C ∗-algebra B(H ).
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Quantum channels
Definition
A (quantum) channel is a trace-preserving, completely positive
(CPTP) map B(HA)→ B(HB ).

positive and trace-preserving so it maps densities to densities;
completely positive so you can tensor with another system and
still have positivity.

Theorem (Stinespring)
A linear map θ : A→ B(H ), from a C ∗-algebra A, is completely
positive if and only if it admits a dilation of the form

θ(a) = V ∗π(a)V (a ∈ A)

for π : A→ B(K ) a ∗-homomorphism, and V : H → K a bounded
linear map.
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Stinespring and Kraus

Any CP map E : B(HA)→ B(HB ) has the form

E(x ) = V ∗π(x )V (x ∈ B(HA)),

where V : HB → K , and π : B(HA)→ B(K ) is a ∗-representation.

Any such π is of the form π(x ) = x ⊗ 1 where K ∼= HA ⊗K ′.

Take an o.n. basis (ei ) for K ′ so V (ξ) =
∑

i K
∗
i (ξ)⊗ ei for some

operators Ki : HA → HB .

We arrive at the Kraus form:

E(x ) =
∑

i

KixK ∗
i (x ∈ B(HA)).

Trace-preserving if and only if
∑

i K
∗
i Ki = 1.
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Quantum zero-error

We turn B(H ) into a Hilbert space using the trace: (T |S) = tr(T ∗S).
A sensible notion of when densities ρ, σ are distinguishable is when
they are orthogonal.
Let E(x ) =

∑
i KixK ∗

i be a quantum channel. We wish to consider
when E(ρ) ⊥ E(σ). As E is positive, this is equivalent to

E(|ψ⟩⟨ψ|) ⊥ E(|ϕ⟩⟨ϕ|) (ψ ∈ Image ρ,ϕ ∈ Imageσ).

Equivalently

0 = tr
(
E(|ψ⟩⟨ψ|)E(|ϕ⟩⟨ϕ|)

)
=

∑
i,j

tr
(
Ki |ψ⟩⟨ψ|K ∗

i Kj |ϕ⟩⟨ϕ|K ∗
j
)

=
∑
i,j

|⟨ψ|K ∗
i Kj |ϕ⟩|2

which is equivalent to ⟨ψ|K ∗
i Kj |ϕ⟩ = 0 for each i , j .
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To operator systems

So ψ,ϕ are distinguishable after applying E when

⟨ψ|T |ϕ⟩ = 0 for each T ∈ lin{K ∗
i Kj }.

Set S = lin{K ∗
i Kj } which has the properties:

S is a linear subspace;

T ∈ S if and only if T ∗ ∈ S;

1 ∈ S (as
∑

i K
∗
i Ki = 1 as E is CPTP).

That is, S is an operator system, which depends only on E and not the
choice of (Ki ).

Theorem (Duan)
For any operator system S ⊆ B(HA) there is some quantum
channel E : B(HA)→ B(HB ) giving rise to S.
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In the classical case

Given a classical channel from A to B with probabilities p(b|a), we
encode this as follows:

Let HA = ℓ2(A) with o.n. basis {|a⟩ : a ∈ A}; and the same for B .

Define Kraus operators

Kab = p(b|a)1/2|b⟩⟨a | : HA → HB .

Then E : ρ 7→
∑

a,b KabρK ∗
ab sends a pure state |c⟩⟨c| to∑

ab

Kab |c⟩⟨c|K ∗
ab =

∑
ab

p(b|a)|b⟩⟨a |c⟩⟨c|a⟩⟨b| =
∑
b

p(b|c)|b⟩⟨b|.

That is, the combination of pure states which can be received, given
that message c was sent.
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The associated operator system

The Kraus operators are

Kab = p(b|a)1/2|b⟩⟨a | : HA → HB .

Hence

S = lin{K ∗
abKcd } = lin{p(b|a)1/2p(d |c)1/2|a⟩⟨b|d⟩⟨c|}

= lin{p(b|a)1/2p(b|c)1/2|a⟩⟨c|}
= lin{|a⟩⟨c| : a ∼ c},

where a ∼ c exactly when p(b|a)p(b|c) > 0 for some b.
Thus S is directly linked to the confusability graph of the channel: it is
the span of the matrix units eac for each edge (a , c) in the graph.
(Notice here our “graphs” are finite, simple, but we allow (single,
unoriented) loops at vertices.)
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Quantum relations

Simultaneously, and motivated more by “noncommutative geometry”:

Definition (Weaver)
Let M ⊆ B(H ) be a von Neumann algebra. A quantum relation on M
is a weak∗-closed subspace S ⊆ B(H ) with M ′SM ′ ⊆ S . We say that
the relation is:

1 reflexive if M ′ ⊆ S ;
2 symmetric if S∗ = S where S∗ = {x ∗ : x ∈ S };

3 transitive if S2 ⊆ S where S2 = lin
w∗

{xy : x , y ∈ S }.

When M = ℓ∞(X ) ⊆ B(ℓ2(X )) there is a bijection between the usual
meaning of “relation” on X and quantum relations on M , given by

x ∼ y when ex ,y ∈ S , S = lin
w∗

{ex ,y : x ∼ y}.
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Operator bimodules

The condition that M ′SM ′ ⊆ S means that S is an operator
bimodule over M ′.
(Not to be confused with Hilbert C ∗-modules!)

We assume M ⊆ B(H ) and S ⊆ B(H ).

If M ⊆ B(K ) as well, we of course want a T ⊆ B(K )

corresponding to S .

This can be found by using the structure theory for normal
∗-homomorphisms θ : M → B(K ). Essentially θ is a dilation
followed by a cut-down in the commutant.

That S is a bimodule over M ′ is needed to get this
correspondence with T .

So this notion is really independent of the choice of embedding
M ⊆ B(H ). [Weaver] gives an intrinsic notion just using M .
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Quantum graphs

As a graph on a (finite) vertex set V is simply a relation, and as:

undirected graphs correspond to symmetric relations;

a reflexive relation corresponds to having a “loop” at every vertex.

Definition (Weaver)
A quantum graph on a von Neumann algebra M ⊆ B(H ) is a reflexive,
symmetric quantum relation. That is, a unital, self-adjoint,
weak∗-closed subspace S ⊆ B(H ), which is an M ′-bimodule
(M ′SM ′ ⊆ S).

If M = B(H ) with H finite-dimensional, then as M ′ = C, a quantum
graph is just an operator system: that is, exactly what we had before!
[Duan, Severini, Winter; Stahlke]
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Adjacency matrices

Given a graph G = (V ,E) consider the {0, 1}-valued matrix A with

Ai,j =

{
1 : (i , j ) ∈ E ,

0 : otherwise,

the adjacency matrix of G .

A is idempotent for the Schur product;

G is undirected if and only if A is self-adjoint;

A has 1s down the diagonal when G has a loop at every vertex.

We can think of A as an operator on ℓ2(V ). This is the GNS space for
the C ∗-algebra ℓ∞(V ) for the state induced by the uniform measure.
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General C ∗-algebras

Let B be a finite-dimensional C ∗-algebra, and let φ be a faithful state
on B , with GNS space L2(B). Thus B bijects with L2(B) as a vector
space, and so we get:

The multiplication on B induces a map
m : L2(B)⊗ L2(B)→ L2(B);

the Hilbert space structure now allows us to define
m∗ : L2(B)→ L2(B)⊗ L2(B).

The unit in B induces a map η : C→ L2(B);

similarly we obtain η∗ : L2(B)→ C, which is just φ.

We get an analogue of the Schur product:

x • y = m(x ⊗ y)m∗ (x , y ∈ B(L2(B))).
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Quantum adjacency matrix

Definition (Many authors)

A quantum adjacency matrix is a self-adjoint A ∈ B(L2(B)) with:

m(A⊗A)m∗ = A (so Schur product idempotent);

(1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) = A;

m(A⊗ 1)m∗ = id (a “loop at every vertex”);

The middle axiom is a little mysterious: it roughly corresponds to
“undirected”.
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Subspaces to projections
Fix a finite-dimensional C ∗-algebra (von Neumann algebra) M . A
“quantum graph” is either:

A subspace of B(H ) (where M ⊆ B(H )) with some properties; or
An operator on L2(M ) with some properties.

How do we move between these?

S ⊆ B(H ) is a bimodule over M ′. As H is finite-dimensional, B(H ) is
a Hilbert space for

(x |y) = tr(x ∗y).

Then M ⊗M op is represented on B(H ) via

π : M ⊗M op → B(B(H )); π(x ⊗ y) : T 7→ xTy .

The commutant of π(M ⊗M op) is M ′ ⊗ (M ′)op.
An M ′-bimodule of B(H ) corresponds to an
M ′ ⊗ (M ′)op-invariant subspace of the Hilbert space B(H );
which corresponds to a projection in M ⊗M op.
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Operators to algebras

So how can we relate:

Operators A ∈ B(L2(M ));

Projections in M ⊗M op?

[Musto, Reutter, Verdon]
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Operators to algebras 2

Recall the GNS construction for a tracial state ψ on M :

Λ : M → L2(M ); (Λ(x )|Λ(y)) = ψ(x ∗y).

As L2(M ) is finite-dimensional, every operator on L2(M ) is a linear
combination of rank-one operators. So we may define a bijection

Ψ : B(L2(M ))→M ⊗M op; |Λ(b)⟩⟨Λ(a)| 7→ b ⊗ a∗,

and extend by linearity!
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Operators to algebras 3

Ψ : B(L2(M ))→M ⊗M op; |Λ(b)⟩⟨Λ(a)| 7→ b ⊗ a∗,

Ψ is a homomorphism for the “Schur product”
A1 •A2 = m(A1 ⊗A2)m∗;

A 7→ (1⊗ η∗m)(1⊗A⊗ 1)(m∗η⊗ 1) corresponds to the
anti-homomorphism σ : a ⊗ b 7→ b ⊗ a on M ⊗M op;

A 7→ A∗ corresponds to e 7→ σ(e)∗.

Conclude: A quantum adjacency matrix corresponds to an idempotent
e ∈M ⊗M op with σ(e) = e and σ(e)∗ = e .
That is, a projection e with σ(e) = e .
But: There is no clean one-to-one correspondence between the axioms.
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KMS States
Any faithful state ψ is KMS: there is an automorphism σ ′ of M with

ψ(ab) = ψ(bσ ′(a)) (a , b ∈M ).

Indeed, there is Q ∈M positive and invertible with

ψ(a) = tr(Qa) σ ′(a) = QaQ−1.

Theorem (D.)
Twisting our bijection Ψ using σ ′ allows us to establish a bijection
between:

Quantum adjacency operators A ∈ B(L2(M ));

projections e ∈M ⊗M op with e = σ(e) and (σ ′ ⊗ σ ′)(e) = e;

self-adjoint M ′-bimodules S ⊆ B(H ) with QSQ−1 = S.

So this is more restrictive than the tracial case.
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Invariance under the modular automorphism

Why do we end up with (σ ′ ⊗ σ ′)(e) = e?

The “middle axiom” is a bit mysterious: we already assume that A
is self-adjoint, and shouldn’t this alone correspond to the graph
being undirected? (Both conditions together is a bit strong.)

[Matsuda] looked at a different condition, that of A being “real”
which means that A : L2(B)→ L2(B), thought of as a map
B → B , is ∗-preserving.

[D.] showed that replacing “self-adjoint and axiom (2)” with “real”
gives a simple bijection with projections.

[Wasilewski] has recently shown that looking at “KMS
inner-products” not “GNS inner-products” is a nice framework to
view this in.

(However, we are stuck with the existing literature.)
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Towards homomorphisms
Let B1,B2 be finite-dimensional C ∗-algebras (maybe just Bi = B(Hi )),
and let θ : B1 → B2 be a CPTP map with Kraus form

θ(x ) =
n∑

i=1

bixb∗
i .

For i = 1, 2 let Bi ⊆ B(Hi ) and let Si ⊆ B(Hi ) be a quantum
graph/relation over Bi .

Definition (Weaver)
The pushforward of S1 is

−→
S1 = B ′

2-bimodule {bixb∗
j : x ∈ S1, 1 ⩽ i , j ⩽ n}.

The pullback of S2 is

←−
S2 = B ′

1-bimodule {b∗
i ybj : y ∈ S2, 1 ⩽ i , j ⩽ n}.
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Motivation
Let G = (VG ,EG), H = (VH ,EH ) be graphs.

For f : VG → VH a map, define

θ : C (VH )→ C (VG),

θ(a)(u) = a(f (u)) (u ∈ VG , a ∈ C (VH )).

So θ is a ∗-homomorphism, in particular, a UCP map.
We find a Kraus form for θ. Given x ∈ VH there might be many (or
none!) u ∈ VG with f (u) = x ; enumerate the u in some way. Define
bi : ℓ

2(VG)→ ℓ2(VH ) by

bi (δu) = δx if u is the ith vertex with f (u) = x .

Then indeed∑
i

b∗
i abi (δu) = a(f (u)) = θ(a)(δu) (a ∈ C (VH ),u ∈ VG).
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CPTP maps
These (bi ) satisfy the pleasing fact that∑

i

bieub∗
i = ef (u) (u ∈ VG),

where eu ∈ ℓ∞(VG) is the minimal projection. So we also obtain a
TPCP map θ̂ : C (VG)→ C (VH ).

The operator system associated to G is

SG = lin{eu,v : (u , v) ∈ EG } ⊆MVG .

Then, using θ̂, −→
SG = lin{ef (u),f (v) : (u , v) ∈ EG }.

Similarly, given SH , we find that

←−
SH = lin{eu,v : (f (u), f (v)) ∈ EH }.
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Homomorphisms

−→
SG = lin{ef (u),f (v) : (u , v) ∈ EG }.

So
−→
SG ⊆ SH means exactly that

(u , v) ∈ EG =⇒ (f (u), f (v)) ∈ EH .

That is, f : VG → VH induces a graph homomorphism.

So we’ve captured the concept of a graph homomorphism using−→
SG .

For general quantum graphs, and general TPCP maps, Stahlke
takes this as the definition of a homomorphism.

Weaver calls these CP morphisms; tentatively suggests we should
start with a ∗-homomorphism if we want a “homomorphism”.
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Pullbacks
[Time?] [We “reverse the arrows” and use UCP maps not TPCP maps.]
Let θ : M → N be a normal CP map between von Neumann algebras
M ⊆ B(HM ) and N ⊆ B(HN ). The Stinespring dilation takes a special
form:

there is a Hilbert space K and U : HN → HM ⊗K ;
θ(x ) = U ∗(x ⊗ 1)U for x ∈M ⊆ B(HM );
there is a normal ∗-homomorphism ρ : N ′ → HM ⊗K with
Ux ′ = ρ(x ′)U for x ′ ∈ N ′.

Proposition (D.)
The pullback satisfies

←−
S = weak∗-closure{U ∗xU : x ∈ S⊗B(K )},

independent of choice of U . In particular, this is already an
N ′-bimodule.
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Duality

Let B1,B2 be finite-dimensional with faithful traces φi . Given a UCP
map θ : B2 → B1 there is a TPCP map θ̂ : B1 → B2 satisfying/defined
by

φ1(aθ(b)) = φ2(θ̂(a)b) (a ∈ B1, b ∈ B2).

(“Accardi–Cecchini adjoint”.)

Proposition (D.)

Let φi be the “Markov Traces”, and given θ form θ̂. Then a
pushforward of a quantum relation using θ is the same as the
pullback using θ̂.

(We saw this for our maps on ℓ∞ and ℓ1. The general case is more
complicated, but follows roughly the same idea.)
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Homomorphisms

Recall that θ : M → N is a homomorphism / CP-morphism S1 → S2

when
−→
S2 ⊆ S1.

Theorem (Stahlke)
Let θ : C (VH )→ C (VG) be a UCP map giving a homomorphism G
to H (that is, with

−→
SG ⊆ SH ). Then there is some map

f : VG → VH which is a (classical) graph homomorphism.

In general θ need not be directly related to f .

However, often we just care about the existence of a
homomorphism.

E.g. a k -colouring of G corresponds to some homomorphism
G → Kk , the complete graph. (This requires our graphs not to
have loops!)
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Automorphisms

An automorphism of a graph G = (V ,E) is a bijection θ : V → V
which satisfies that (i , j ) ∈ E ⇔ (θ(i), θ(j )) ∈ E .
Set V = {1, · · · ,n} for ease, so the adjacency matrix A is in Mn .

Lemma
Let Pθ ∈Mn be permutation matrix associated with a bijection θ.
Then θ is an automorphism of G if and only if PθA = APθ.

Proof.
PθA = APθ is equivalent to (θ−1(i), j ) ∈ E ⇔ (i , θ(j )) ∈ E , which in
turn is equivalent to (i , j ) ∈ E ⇔ (θ(i), θ(j )) ∈ E .
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Non-commutative topology
I am under obligation to provide this table:

Spaces Algebras
Locally compact Hausdorff space Commutative C∗-algebra

Compact Unital
(Proper) continuous map ∗-Homomorphism

Cartesian Product Tensor product

Remember that this relationship is contravariant.
How might we deal with (Compact) groups?
As the product G ×G → G and the inverse G → G and the identity
∗ → G are continuous maps, we could specify a commutative
C ∗-algebra A, and ∗-homomorphisms

A→ A⊗A, A→ A, A→ C,

satisfying appropriate axioms.
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What are groups?

Definition
A group is a set G with an associative product G ×G → G such that:

There is e ∈ G with eg = ge = g for each g ∈ G ;

For each g ∈ G there are h , k ∈ G with gh = kg = e .

So really the identity and inverse are “properties” of the semigroup G ,
not “structure”.
It turns out that we get a (much) more interesting theory if we
similarly focus on the product, and think about an extra property.
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Compact Quantum groups

Definition (Woronowicz)
A compact quantum group is a unital C ∗-algebra A together with a
unital ∗-homomorphism, the coproduct, ∆ : A→ A⊗A, which is
coassociative, (∆⊗ id)∆ = (id⊗∆)∆, and such that:

{(a ⊗ 1)∆(b) : a , b ∈ A}, {(1⊗ a)∆(b) : a , b ∈ A}

both have dense linear span in A⊗A.

Theorem
Let (A, ∆) be a compact quantum group with A commutative.
There is a compact group G with A = C (G) and
∆ : C (G)→ C (G)⊗C (G) = C (G ×G) given by

∆(f )(s , t) = f (st) (f ∈ C (G), s , t ∈ G).
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Quantum group (co)actions
An (right) action of a group G on a space/set X is a map

X ×G → X .

So we get a ∗-homomorphism

α : C (X )→ C (X )⊗C (G),

(id⊗∆)α = (α⊗ id)α corresponds to x · st = (x · s) · t ;
lin{α(b)(1⊗ a) : a ∈ C (G), b ∈ C (X )} is dense in C (X )⊗C (G)

corresponds to x · e = x .

Definition (Podleś)
A (right) coaction of a compact quantum group (A, ∆) on a C ∗-algebra
B is a unital ∗-homomorphism α : B → B ⊗A with these two
conditions.
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Coactions on ℓ∞n
Fix a compact quantum group (A, ∆).

The algebra ℓ∞n is spanned by projections (ei )
n
i=1.

So α : ℓ∞n → ℓ∞n ⊗A is determined by (uij ) in A with

α(ei ) =

n∑
j=1

ej ⊗ uji .

α is a ∗-homomorphism ⇔ each uji a projection and
ujiujk = δikuji ;

α is unital ⇔
∑

i uji = 1;

α satisfies the coaction equation ⇔ ∆(uji ) =
∑

k ujk ⊗ uki ;

α satisfies the Podleś density condition ⇔
∑

i uji = 1.

General Theory =⇒
∑

j uji = 1.

So u = (uij ) is a matrix of projections, each row and column sums
to 1. A quantum permutation matrix or magic unitary.
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Quantum symmetry group of the space of n points

For ℓ∞n = C ({1, 2, · · · ,n}),

α(ei ) =

n∑
j=1

ej ⊗ uji ,

with u = (uij ) a magic unitary.

Theorem (Wang)
Let S+

n be the “universal” C ∗-algebra generated by a magic
unitary. Then S+

n is the “largest” compact quantum group which
acts on Cn is a “non-degenerate” way.

We think of S+
n as the “quantum symmetry group” of {1, 2, · · · ,n}.
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(Co)actions on graphs
Recall that a permutation θ gives an automorphism of G when

PθAG = AGPθ.

Here AG is the adjacency matrix of G , which we can think of as also a
linear map ℓ∞n → ℓ∞n .
So Aut(G) acts in a way which preserves AG :

α : ℓ∞n → ℓ∞n ⊗C (Aut(G)); αAG = (AG ⊗ id)α.

Definition (Banica)
The quantum automorphism group of G is the maximal compact
quantum group QAut(G) with a coaction satisfying

α : ℓ∞n → ℓ∞n ⊗ QAut(G); αAG = (AG ⊗ id)α.

Equivalently, the underlying magic unitary U = (uij ) has to commute
with the adjacency matrix AG . This allows us to construct QAut(G)

as a quotient of S+
n .
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Examples

We say that a graph has quantum symmetry if Aut(G) ̸= QAut(G).

By now, we have many examples.

For example, the Petersen graph has no quantum symmetry
[Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]

[Roberson, Schmidt] have constructed G with Aut(G) ̸= QAut(G)

and yet QAut(G) is finite.

[Dobben de Bruyn, Roberson, Schmidt] have constructed G with
Aut(G) trivial and QAut(G) non-trivial.
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(Co)actions on operator bimodules

What is an “automorphism” of S ⊆ B(ℓ2(V ))?

Start with a bijection θ : V → V , hence giving Pθ ∈ B(ℓ2(V )).

Then get an action on B(ℓ2(V )) as θ̂ : x 7→ PθxP∗
θ (as P∗

θ = P−1
θ ).

When is S left invariant: PθSP∗
θ = S?

Notice that
PθeijP∗

θ = eθ(i),θ(j )

So if G is a graph, and S = SG the canonical operator system;

then PθSGP∗
θ = S exactly when (i , j ) ∈ E ⇔ (θ(i), θ(j )) ∈ E ;

that is, θ is an automorphism of G .

How to phrase this in terms of coactions?
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Unitary implementations

Given a coaction α : ℓ∞(V )→ ℓ∞(V )⊗A of (A, ∆) on ℓ∞(V ), we saw
before that α gives rise to a magic unitary u = (uij )i,j∈V ,

α(ei ) =
∑
j∈V

ej ⊗ uji (i ∈ V ).

Lemma
Let ℓ∞(V ) ⊆ B(ℓ2(V )). Then

α(x ) = u(x ⊗ 1)u∗ (x ∈ ℓ∞(V )).
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Coactions on operator bimodules

α(x ) = u(x ⊗ 1)u∗ (x ∈ ℓ∞(V ) ⊆ B(ℓ2(V ))).

It hence make sense. . .

Definition
α is a coaction on S ⊆ B(ℓ2(V )) exactly when u(x ⊗ 1)u∗ ∈ S⊗A for
each x ∈ S.

One can check (non-trivially) that we then get the following.

Theorem (Eifler)
If a graph G is associated to the ℓ∞(V )-operator bimodule S, then
a coaction of (A, ∆) on ℓ∞(V ) gives a coaction on G if and only if
it gives a coaction on S.
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Coactions on C ∗-algebras

A coaction of (A, ∆) on B is, as before,

α : B → B ⊗A; (id⊗∆)α = (α⊗ id)α,

and satisfying the Podleś density condition.
(So simply replace ℓ∞n by an arbitrary B .)

Theorem (Wang)
There is no maximal compact quantum group coacting on B.
If ψ is a faithful state on B, there is a maximal compact quantum
group coacting on B and preserving ψ, meaning:
(ψ⊗ id)α(x ) = ψ(x )1 for x ∈ B. Write QAut(B , ψ) for this.
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Coactions on quantum adjacency matrices

There is now a clear definition:

Definition (Brannan et al.)
Let AG be a quantum adjacency matrix on (B , ψ). We say that (A, ∆)
coacts on AG when α : B → B ⊗A is a coaction, which preserves ψ,
and with (AG ⊗ id)α = αAG .

Here we regard AG as a linear map on B .

That α preserves ψ allows us to define a unitary
U ∈ B(L2(B))⊗A which implements α, as α(x ) = U (x ⊗ 1)U ∗.
Indeed, one way to prove Wang’s theorem is to start with such a
U and impose certain conditions on it (compare Compact
Quantum Matrix Groups).

Then, equivalently, we require that U and AG ⊗ 1 commute.
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Coactions on operator bimodules
A coaction α which preserves ψ gives a unitary U (which is a
corepresentation) and it is then easy to see that

αU : B(L2(B))→ B(L2(B))⊗A; x 7→ U (x ⊗ 1)U ∗

is a coaction (which extends α).
Might this leave S ⊆ B(L2(B)) invariant if and only if U commutes
with AG?

No, as the “trivial quantum graph” is S = B ′, which should always
be invariant, but αU leaves B invariant, not B ′.
Instead, we can use the modular conjugation J and antipode to
form a “commutant” coaction α ′

U ; or equivalently, look at αU but
work with

S ′ := {JTJ : T ∈ S}.

Theorem (D.)
α leaves AG invariant if and only if αU leaves S ′ invariant.
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Further

For a “homomorphism” do we really want our UCP map to be a
∗-homomorphism?

It turns out some ideas from “quantum games” [Brannan et al.]
naturally separate out the conditions on a “CP-morphism”, and
these actually force a ∗-homomorphism.

Also related to trying to “ignore loops”.

Possible future things:

What are the “correct axioms”? E.g. self-adjointness or “reality”?
Applications which might motivate this?

Is there some sort of infinite-dimensional theory?
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